Signal-to-noise ratio equalized filtered back-projection for emission tomography

Author(s):  
Charles C. Watson
1993 ◽  
Vol 13 (3) ◽  
pp. 425-437 ◽  
Author(s):  
Jean-Baptiste Poline ◽  
Bernard M. Mazoyer

We present a new method for the analysis of individual brain positron emission tomography (PET) activation maps that looks for activated areas of a certain size rather than pixels with maximum values. High signal-to-noise-ratio pixel clusters (HSC) are identified and their sizes are statistically tested with respect to a Monte-Carlo–derived distribution of cluster sizes in pure noise images. From multiple HSC size tests, a strategy is proposed for control of the overall type I error. The sensitivity and specificity of this method have been assessed using realistic Monte Carlo simulations of brain activation maps. When compared with the γ2 statistic of the local maxima distribution, the proposed method showed enhanced sensitivity, particularly for signals of low magnitude and/or large size. Its potential for the individual analysis of PET activation studies is presented in two sets of subjects who underwent two cognitive protocols. Although it can be viewed as an alternative to the classical stereotactic averaging approach, this new method is intended to be a first step toward the analysis of single-subject PET activation studies.


Author(s):  
David A. Grano ◽  
Kenneth H. Downing

The retrieval of high-resolution information from images of biological crystals depends, in part, on the use of the correct photographic emulsion. We have been investigating the information transfer properties of twelve emulsions with a view toward 1) characterizing the emulsions by a few, measurable quantities, and 2) identifying the “best” emulsion of those we have studied for use in any given experimental situation. Because our interests lie in the examination of crystalline specimens, we've chosen to evaluate an emulsion's signal-to-noise ratio (SNR) as a function of spatial frequency and use this as our critereon for determining the best emulsion.The signal-to-noise ratio in frequency space depends on several factors. First, the signal depends on the speed of the emulsion and its modulation transfer function (MTF). By procedures outlined in, MTF's have been found for all the emulsions tested and can be fit by an analytic expression 1/(1+(S/S0)2). Figure 1 shows the experimental data and fitted curve for an emulsion with a better than average MTF. A single parameter, the spatial frequency at which the transfer falls to 50% (S0), characterizes this curve.


Author(s):  
W. Kunath ◽  
K. Weiss ◽  
E. Zeitler

Bright-field images taken with axial illumination show spurious high contrast patterns which obscure details smaller than 15 ° Hollow-cone illumination (HCI), however, reduces this disturbing granulation by statistical superposition and thus improves the signal-to-noise ratio. In this presentation we report on experiments aimed at selecting the proper amount of tilt and defocus for improvement of the signal-to-noise ratio by means of direct observation of the electron images on a TV monitor.Hollow-cone illumination is implemented in our microscope (single field condenser objective, Cs = .5 mm) by an electronic system which rotates the tilted beam about the optic axis. At low rates of revolution (one turn per second or so) a circular motion of the usual granulation in the image of a carbon support film can be observed on the TV monitor. The size of the granular structures and the radius of their orbits depend on both the conical tilt and defocus.


Sign in / Sign up

Export Citation Format

Share Document