scholarly journals Model Predictive Feedforward Control for High-Dynamic Speed Control of Combustion Engine Test Beds

Author(s):  
Dennis Erdogan ◽  
Stefan Jakubek ◽  
Christian Mayr ◽  
Christoph Hametner
2013 ◽  
Vol 60 (9) ◽  
pp. 3877-3888 ◽  
Author(s):  
Christian Westermayer ◽  
Raphael Priesner ◽  
Martin Kozek ◽  
Robert Bauer

Author(s):  
Basim Alsayid ◽  
Wael A. Salah ◽  
Yazeed Alawneh

<span style="font-size: 9pt; font-family: 'Times New Roman','serif'; mso-bidi-font-style: italic; mso-fareast-font-family: 'Times New Roman'; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;">Recent developments in the field of magnetic materials and power electronics, along with the availability of cheap powerful processors, have increased the adoption of brushless direct current (BLDC) motors for various applications, such as in home appliances as well as in automotive, aerospace, and medical industries. The wide adoption of this motor is due to its many advantages over other types of motors, such as high efficiency, high dynamic response, long operating life, relatively quiet operation, and higher speed ranges. This paper presents a simulation of digital sensor control of permanent magnet BLDC motor speed using the MATLAB/SIMULINK environment. A closed loop speed control was developed, and different tests were conducted to evaluate the validity of the control algorithms. Results confirm the satisfactory operation of the proposed control algorithms.</span>


Author(s):  
Cristian Garcia ◽  
Margarita Norambuena ◽  
Jose Rodriguez ◽  
Cesar Silva ◽  
Davood Arab Khaburi

Author(s):  
Elie Haddad ◽  
David Chalet ◽  
Pascal Chesse

Automotive manufacturers nowadays are constantly working on improving their internal combustion engines’ performance by reducing the fuel consumption and emissions, without compromising the power generated. Manufacturers are therefore relying on virtual engine models that can be run on simulation software in order to reduce the amount of time and costs needed, in comparison with experiments done on engine test benches. One important element of the intake system of an internal combustion engine is the throttle valve, which defines the amount of air reaching the plenum before being drawn into the cylinders. This article discusses a widely used model for the estimation of air flow rate through the throttle valve in an internal combustion engine simulation. Experiments have been conducted on an isolated throttle valve test bench in order to understand the influence of different factors on the model’s discharge coefficient. These experiments showed that the discharge coefficient varies with the pressure ratio across the throttle valve and with its angle. Furthermore, for each angle, this variation can be approximated with a linear model composed of two parameters: the slope and the Y-Intercept. These parameters are calibrated for different throttle valve angles. This calibration can be done using automotive manufacturers’ standard engine test fields that are often available. This model is then introduced into an engine simulation model, and the results are compared to the experimental data of a turbocharged engine test bench for validation. They are also compared with a standard discharge coefficient model that varies only with the throttle valve angle. The results show that the new model for the discharge coefficient reduces mass flow estimation errors and allows expanding the applications of the throttle valve isentropic nozzle model.


2014 ◽  
Vol 663 ◽  
pp. 373-380
Author(s):  
Azher Razzaq Hadi Witwit ◽  
Azman Yasin ◽  
Horizon Gitano ◽  
Mohammed Ismael Mahmood

In this study, we will address the problem of knocking in internal combustion engines, and some of the factors affecting the knocking, through the study of the power of the effect of each factor after finding a model representing the relationship between the factors. We found Curve fitting model from data that has been obtained through the engine test (1.3L Campro, modified to turbocharger, 4-cylinder, MPI). This model has been evaluated statistically after finding the parameters that intervened in the construction of that model.


Sign in / Sign up

Export Citation Format

Share Document