Adaptive virtual infrastructure planning over interconnected IT and optical network resources using evolutionary game theory

Author(s):  
M. P. Anastasopoulos ◽  
A. Tzanakaki
2019 ◽  
Vol 14 (12) ◽  
pp. 1717-1724
Author(s):  
Jing Tan

In the current communication technology, optical technology has been applied to the network to obtain optical network technology. Among them, optical network technology is optical wavelength division multiplexing (WDM), which can play a larger transmission capacity under lower energy consumption. Further breakthroughs in intelligent optical networks require improvements in routing issues. In this study, firstly, the optical network architecture is analyzed, including wavelength division multiplexing optical network and elastic optical network. Then, the routing problem in optical networks is analyzed, and the main factors affecting the routing problem are extracted. On the basis of studying the energy consumption characteristics of data centers and WDM optical networks, and considering the characteristics of cloud service configuration, evolutionary game theory and optical bypass theory are introduced to obtain an intelligent routing algorithm for cloud computing based on optical networks, and energy consumption tests are carried out on data transmission and processing. In order to reduce the overall energy consumption, the use of IP routers is reduced, and the idle data servers are shut down. Then, it is found that the total energy consumption increases slowly at different times. The energy consumption of evolutionary game theory is compared. Compared with non-evolutionary game theory, the optimized intelligent routing algorithm makes the energy consumption more stable, while reducing the use of servers can further reduce the good expenditure. The proposed algorithm is oriented to optical network, which solves the problem of low overall utilization of network resources and improves the service quality of cloud services.


2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Zhu Bai ◽  
Mingxia Huang ◽  
Shuai Bian ◽  
Huandong Wu

The emergence of online car-hailing service provides an innovative approach to vehicle booking but has negatively influenced the taxi industry in China. This paper modeled taxi service mode choice based on evolutionary game theory (EGT). The modes included the dispatching and online car-hailing modes. We constructed an EGT framework, including determining the strategies and the payoff matrix. We introduced different behaviors, including taxi company management, driver operation, and passenger choice. This allowed us to model the impact of these behaviors on the evolving process of service mode choice. The results show that adjustments in taxi company, driver, and passenger behaviors impact the evolutionary path and convergence speed of our evolutionary game model. However, it also reveals that, regardless of adjustments, the stable states in the game model remain unchanged. The conclusion provides a basis for studying taxi system operation and management.


Sign in / Sign up

Export Citation Format

Share Document