Improving The Performances Of An Impedance Measurement System. 1. The Test Signal Generator

Author(s):  
L. Breniuc ◽  
S. Chifan
2013 ◽  
Vol 4 (1) ◽  
pp. 75-79
Author(s):  
Dr Aktharuzzaman ◽  
Tanvir N Baig ◽  
K Siddique-e Rabbani

Designing of electronic circuitry and development of necessary software has been performed in the present work for a microcontroller based 4-electrode Focused Impedance measurement system. This needs a complex sequential analog switching of constant current ac signal generator and a potential measuring unit to 4 electrodes on the object under study. The performances of the designed system and the developed microcontroller software have been studied using a commercially available simulation software, ‘Proteus-7’, and the results are very satisfactory. DOI: http://dx.doi.org/10.3329/bjmp.v4i1.14690 Bangladesh Journal of Medical Physics Vol.4 No.1 2011 75-79


2012 ◽  
Vol 263-266 ◽  
pp. 241-245 ◽  
Author(s):  
Zhang Yong Li ◽  
Fei Ba Chang ◽  
Xiao Bo Chen ◽  
Rui Leng ◽  
Wei Wang

This article describes a measurement of human abdominal fat device designed based on BIS (bioimpedance spectroscopy), the device adopts four electrodes multi-frequency bioelectrical impedance measurement system, including the programmable signal generator module and the amplitude and phase detection module. Program controlled signal generator module can generate the high output impedance of the constant current source in the eight frequency points constant current source between 5KHz and1MHz; amplitude phase detecting module can detect the human body electrical impedance real part and imaginary part information. Therefore, the device can be accurate measurement of human abdominal impedance information in the whole frequency range. Meanwhile, according to the selected electrode fixed position and the appropriate measurement scheme, can calculate the corresponding depth of abdominal fat content.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 673
Author(s):  
Augustyn Wójcik ◽  
Piotr Bilski ◽  
Robert Łukaszewski ◽  
Krzysztof Dowalla ◽  
Ryszard Kowalik

The paper presents the novel HF-GEN method for determining the characteristics of Electrical Appliance (EA) operating in the end-user environment. The method includes a measurement system that uses a pulse signal generator to improve the quality of EA identification. Its structure and the principles of operation are presented. A method for determining the characteristics of the current signals’ transients using the cross-correlation is described. Its result is the appliance signature with a set of features characterizing its state of operation. The quality of the obtained signature is evaluated in the standard classification task with the aim of identifying the particular appliance’s state based on the analysis of features by three independent algorithms. Experimental results for 15 EAs categories show the usefulness of the proposed approach.


2021 ◽  
Vol 7 (2) ◽  
pp. 496-499
Author(s):  
Stadler B. Eng. Sebastian ◽  
Herbert Plischke ◽  
Christian Hanshans

Abstract Bioimpedance analysis is a label-free and easy approach to obtain information on cellular barrier integrity and cell viability more broadly. In this work, we introduce a small, low-cost, portable in vitro impedance measurement system for studies where a shadow-free exposure of the cells is a requirement. It can be controlled by a user-friendly web interface and can perform measurements automated and autonomously at short intervals. The system can be integrated into an existing IoT network for remote monitoring and indepth analyses. A single-board computer (SBC) serves as the central unit, to control, analyze, store and forward the measurement data from the single-chip impedance analyzer. Various materials and manufacturing methods were used to produce a purpose-built lid on top of a modified 24-well microtiter plate in a “do it yourself” fashion. Furthermore, three different sensor designs were developed utilizing anodic aluminum oxide (AAO) membranes and gold-plated electrodes. Preliminary tests with potassium chloride (KCl) showed first promising results.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4933 ◽  
Author(s):  
Zbigniew Marszalek ◽  
Krzysztof Duda

This paper describes the design and the performance of simultaneous, multifrequency impedance measurement system for four inductive-loop (IL) sensors which have been developed for vehicle parameters measurement based on vehicle magnetic profile (VMP) analysis. Simultaneous impedance measurement on several excitation frequencies increases the VMP measurement reliability because typical electromagnetic interferences (EMI) are narrowband, and should not simultaneously affect, in the same way, all measurement bands that are spread in the frequency, i.e., it is expected that at least one measurement band is disturbance-free. The system consists of two standard and two slim IL sensors, specially designed and installed, the analogue front-end, and an industrial computer with digital-to-analogue and analogue-to-digital converters accessed via field-programmable gate array (FPGA). The impedance of the IL sensors is obtained by vector measurement of voltages from auto-balancing bridge (ABB) front-end. Complex voltages are demodulated from excitation frequencies with FIR filters designed with the flat-top windows. The system is capable of delivering VMPs in real-time mode, and also storing voltages for off-line postprocessing and analysis. Field distributions and sensitivities of slim and standard IL sensors are also discussed. Field test confirmed assumed increased reliability of VMP measurement for proposed simultaneous multifrequency operational mode.


Sign in / Sign up

Export Citation Format

Share Document