Relationship between finite control set model predictive control and direct current control for three-phase voltage source converters

Author(s):  
Yongchang Zhang ◽  
Qin Zhang
Author(s):  
Anmar Kh. Ali ◽  
Riyadh G. Omar

In this, work the finite control set (FCS) model predictive direct current control strategy with constraints, is applied to drive three-phase induction motor (IM) using the well-known field-oriented control. As a modern algorithm approach of control, this kind of algorithm decides the suitable switching combination that brings the error between the desired command currents and the predicated currents, as low as possible, according to the process of optimization. The suggested algorithm simulates the constraints of maximum allowable current and the accepted deviation, between the desired command and actual currents. The new constraints produce an improvement in system performance, with the predefined error threshold. This can be applied by avoiding the switching combination that exceeds the limited values. The additional constraints are more suitable for loads that require minimum distortion in harmonic and offer protection from maximum allowable currents. This approach is valuable especially in electrical vehicle (EV) applications since its result offers more reliable system performance with low total harmonics distortion (THD), low motor torque ripple, and better speed tracking.


This paper is focused on the development of the rectifier for three phase voltage source to achieve unity power factor at input supply mains. The mathematical model is developed for PWM using direct current control and to apply 3- phase voltage source rectifier decoupled with feed-forward control. This method regulates the output voltage with reduced harmonics. Different PWM techniques such as Hysteresis band and Carrier based sinusoidal is applied and their performance is analysed. This work is implemented in MATLAB/SIMULINK environment. The results confirm the validity of the model and its control method.


2019 ◽  
Vol 9 (17) ◽  
pp. 3513 ◽  
Author(s):  
Mohammed Alhasheem ◽  
Frede Blaabjerg ◽  
Pooya Davari

Finite control set model predictive control (FCS-MPC) methods in different power electronic applications are gaining considerable attention due to their simplicity and fast dynamics. This paper introduces an assessment of the two-level three-phase voltage source converter (2L-VSC) utilizing different MPC schemes with and without a modulation stage. In order to perform such a comparative evaluation, 2L-VSC efficiency and total harmonics distortion of the voltage (THDv) have been investigated, when considering a linear load. The results demonstrate the performance of different MPC algorithms through an experimental verification on a Danfoss converter, and a set of analyses have been studied using the PLECS and MATLAB/SIMULINK together. It can be concluded that a comparable performance is achieved by using conventional MPC (CMPC), improved MPC (IMPC), periodic MPC (PMPC), and MPC scheme with modulator (M 2 PC) controllers. The assessment is critical to classify the strategies as mentioned earlier according to their efficiency. Furthermore, it gives a thorough point of view on which algorithm is suitable for the grid-forming applications.


Sign in / Sign up

Export Citation Format

Share Document