Low-cost solar simulator design for multi-junction solar cells in space applications

Author(s):  
Katherine A. Kim ◽  
Nathan Dostart ◽  
Julia Huynh ◽  
Philip T. Krein
Author(s):  
U. Fegade

Solar energy is an attractive renewable energy source across the globe that can help overcome the energy crises and has the ability to replace conventional resources. Hybrid solar cells have higher conversion efficiency. In the current chapter the research related to the carbon nanotubes, organic and inorganic solar cell, dye-sensitized solar cells and tandem solar cells are reviewed. The organic solar cells are most suitable and economic, but it has low efficiency of up to 15%. The inorganic solar cells are very expensive and have high efficiency of up to 46% and are used in space applications. The hybrid solar cell is the third type and the perovskite tandem has already proven to be quite efficient (17%) and low cost, mostly because of the cheap materials that are being used.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Kyoung-Jun Lee ◽  
Jeong-Hoon Kim ◽  
Ho-Sung Kim ◽  
Dongsul Shin ◽  
Dong-Wook Yoo ◽  
...  

Dye-sensitized solar cells (DSSC) are emerging low-cost, simple alternatives to conventional solar cells. While there has been considerable study on improving the efficiency of DSSCs, there has not been sufficient research on a photovoltaic power conditioning system adaptable to DSSCs or on a solar simulator for DSSCs. When DSSCs are commercialized in the near future, the DSSC modules must be connected to an adaptable power conditioning system in order to manage the energy produced and provide a suitable interface to the load. In the process of developing a power conditioning system, a solar simulator with the characteristics of DSSCs is essential to show the performance of the maximum power point tracking. In this paper, a virtual DSSC is designed and simulated in PSIM. Irradiation factors, temperature and shadow effects are considered in dynamic link library block in PSIM which is linked to the external C routine. A 100 W converter is built to show the performance of a DSSC as the solar simulator controlled by a digital signal processor.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
B. Reeja-Jayan ◽  
Nicholas Folse ◽  
Arumugam Manthiram

The main advantage of organic or polymer solar cells is their compatibility with conventional printing and coating techniques, making them highly cost-effective and suitable for large scale manufacturing. This work describes a simple, scalable, low-cost platform designed to test polymer solar cell devices. Custom built instrumentation and software were developed to analyze the current–voltage characteristics and quantum efficiency (QE) of the solar cells. The test set-up is modular and can be adapted to test solar cells under varying atmospheres (inert and ambient). The solar energy source comprises of an Oriel 91160 300 W class C solar simulator with air mass (AM) 1.5 G filter for spectral shaping and solar intensity variation between 1 and 3 suns. Custom software developed using labview allows for testing to be carried out at high speeds reproducibly with minimal operator intervention. Software-controlled timer functionality allows programmable testing of solar cells over durations ranging from seconds to days, allowing for the evaluation of solar cell operational lifetimes. The facile design of the test set-up presented here provides an opportunity for different laboratories to set-up similar systems and tweak them for performing a host of photovoltaic measurements.


Author(s):  
Yasunobu Iwai ◽  
Koichi Shinozaki ◽  
Daiki Tanaka

Abstract Compared with space parts, consumer parts are highly functional, low cost, compact and lightweight. Therefore, their increased usage in space applications is expected. Prior testing and evaluation on space applicability are necessary because consumer parts do not have quality guarantees for space application [1]. However, in the conventional reliability evaluation method, the test takes a long time, and the problem is that the robustness of the target sample can’t be evaluated in a short time. In this report, we apply to the latest TSOP PEM (Thin Small Outline Package Plastic Encapsulated Microcircuit) an evaluation method that combines preconditioning and HALT (Highly Accelerated Limit Test), which is a test method that causes failures in a short time under very severe environmental conditions. We show that this method can evaluate the robustness of TSOP PEMs including solder connections in a short time. In addition, the validity of this evaluation method for TSOP PEM is shown by comparing with the evaluation results of thermal shock test and life test, which are conventional reliability evaluation methods.


2020 ◽  
pp. 16-21
Author(s):  
PHITCHAPHORN KHAMMEE ◽  
YUWALEE UNPAPROM ◽  
UBONWAN SUBHASAEN ◽  
RAMESHPRABU RAMARAJ

Recently, dye-sensitized solar cells (DSSC) have concerned significant attention attributable to their material preparation process, architectural and environmental compatibility, also low cost and effective photoelectric conversion efficiency. Therefore, this study aimed to use potential plant materials for DSSC. This research presents the extraction of natural pigments from yellow cotton flowers (Cochlospermum regium). In addition, the natural pigments were revealed that outstanding advantages, including a wide absorption range (visible light), easy extraction method, safe, innocuous pigments, inexpensive, complete biodegradation and ecofriendly. Methanol was used as a solvent extraction for the yellow cotton flower. The chlorophylls and carotenoid pigments extractions were estimated by a UV-visible spectrometer. The chlorophyll-a, chlorophyll-b, and carotenoid yield were 0.719±0.061 µg/ml, 1.484±0.107 µg/ml and 7.743±0.141 µg/ml, respectively. Thus, this study results suggested that yellow cotton flowers containing reasonable amounts appealable in the DSSC production.


2006 ◽  
Vol 90 (20) ◽  
pp. 3557-3567 ◽  
Author(s):  
U. Gangopadhyay ◽  
K.H. Kim ◽  
S.K. Dhungel ◽  
U. Manna ◽  
P.K. Basu ◽  
...  

2021 ◽  
Vol 23 ◽  
pp. 100969
Author(s):  
Anusit Kaewprajak ◽  
Pisist Kumnorkaew ◽  
Khathawut Lohawet ◽  
Binh Duong ◽  
Teantong Chonsut ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document