Optimal Energy Management of an Autonomous Hybrid Energy System

Author(s):  
Adewale Z. Obaro ◽  
Josiah L. Munda ◽  
Mukwanga W. Siti
Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 233 ◽  
Author(s):  
Omar Mohammed ◽  
Yassine Amirat ◽  
Mohamed Benbouzid

Hybrid renewable energy systems are a promising technology for clean and sustainable development. In this paper, an intelligent algorithm, based on a genetic algorithm (GA), was developed and used to optimize the energy management and design of wind/PV/tidal/ storage battery model for a stand-alone hybrid system located in Brittany, France. This proposed optimization focuses on the economic analysis to reduce the total cost of hybrid system model. It suggests supplying the load demand under different climate condition during a 25-years interval, for different possible cases and solutions respecting many constraints. The proposed GA-based optimization approach achieved results clear highlight its practicality and applicability to any hybrid power system model, including optimal energy management, cost constraint, and high reliability.


2019 ◽  
Vol 11 (22) ◽  
pp. 6293 ◽  
Author(s):  
Seunghyun Park ◽  
Surender Reddy Salkuti

The proposed optimal energy management system balances the energy flows among the energy consumption by accelerating trains, energy production from decelerating trains, energy from wind and solar photovoltaic (PV) energy systems, energy storage systems, and the energy exchange with a traditional electrical grid. In this paper, an AC optimal power flow (AC-OPF) problem is formulated by optimizing the total cost of operation of a railroad electrical system. The railroad system considered in this paper is composed of renewable energy resources such as wind and solar PV systems, regenerative braking capabilities, and hybrid energy storage systems. The hybrid energy storage systems include storage batteries and supercapacitors. The uncertainties associated with wind and solar PV powers are handled using probability distribution functions. The proposed optimization problem is solved using the differential evolution algorithm (DEA). The simulation results show the suitability and effectiveness of proposed approach.


2019 ◽  
Author(s):  
Suchitra Dayalan ◽  
Rajarajeswari Rathinam ◽  
Pranav Pandey ◽  
Mrutyunjay Adap

Sign in / Sign up

Export Citation Format

Share Document