Analysis of Different Rotor and Stator Structures in Order to Optimize Two-Phase Switch Reluctance Motor Torque Characteristics

Author(s):  
Arash Allahyari ◽  
Sadra Mousavi ◽  
Daryoush Nazarpour
2011 ◽  
Vol 121-126 ◽  
pp. 4122-4126
Author(s):  
Yong Kui Man ◽  
Yu Yan Ma ◽  
Yu Shuang Zhao ◽  
Chang Cheng Xu ◽  
Wen Sheng Hao

In this paper, the mechanical structure of a novel two-phase hybrid stepping motor, which offers big transmission ratio and fast response characteristics, is proposed. Comparing with typical two-phase hybrid stepping motor, permanent magnet of the new model is placed on the stator, thus it has better utilization of space than conventional two-phase hybrid stepping motor. Furthermore, new two-phase hybrid stepping motor torque mathematical model is established. And the two-phase hybrid stepping motor torque vector analysis method we provide here provide you with an intuitive way of research on the new type two-phase hybrid stepping motor operation principle and control mode.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3744
Author(s):  
Jichao Han ◽  
Baojun Ge ◽  
Kai Zhang ◽  
Yang Wang ◽  
Chao Wang

To investigate the influence of control and structure parameters on the starting performance of a switched reluctance motor, a 12/8 pole switched reluctance motor is analyzed in this paper. The novel field-circuit coupled finite element method of switched reluctance motor is proposed in the paper. The influence of the controller on the switched reluctance motor is considered. The influence of rotor initial position angle, starting mode, starting current, and structure parameters on the starting performance of the switched reluctance motor is studied using the field-circuit coupled finite element method. The starting performance of the switched reluctance motor is obtained under the different control and structure parameters. The alternating starting mode of single- and two-phase winding can improve the starting torque of switched reluctance motor (SRM). As the stator pole arc coefficient increases, the starting torque of SRM increases. The appropriate reduction of the air gap length can improve the starting torque of SRM. Experimental results of the prototype are compared with the calculation results, which verifies the reliability of the calculation method and accuracy of the calculation results.


Sign in / Sign up

Export Citation Format

Share Document