A two-phase switched reluctance motor with reduced stator pole-arc

Author(s):  
Piotr Bogusz ◽  
Mariusz Korkosz ◽  
Adam Powrozek ◽  
Jan Prokop
Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3744
Author(s):  
Jichao Han ◽  
Baojun Ge ◽  
Kai Zhang ◽  
Yang Wang ◽  
Chao Wang

To investigate the influence of control and structure parameters on the starting performance of a switched reluctance motor, a 12/8 pole switched reluctance motor is analyzed in this paper. The novel field-circuit coupled finite element method of switched reluctance motor is proposed in the paper. The influence of the controller on the switched reluctance motor is considered. The influence of rotor initial position angle, starting mode, starting current, and structure parameters on the starting performance of the switched reluctance motor is studied using the field-circuit coupled finite element method. The starting performance of the switched reluctance motor is obtained under the different control and structure parameters. The alternating starting mode of single- and two-phase winding can improve the starting torque of switched reluctance motor (SRM). As the stator pole arc coefficient increases, the starting torque of SRM increases. The appropriate reduction of the air gap length can improve the starting torque of SRM. Experimental results of the prototype are compared with the calculation results, which verifies the reliability of the calculation method and accuracy of the calculation results.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 359
Author(s):  
Jiayi Fan ◽  
Insu Jung ◽  
Yongkeun Lee

In this paper, a sensorless position detection method of a two-phase switched reluctance motor (SRM) at standstill is proposed based on the voltage pulse injection method. Due to the torque dead zone and the lack of starting capability in the two-phase SRM, a rotor with a stepped structure is adopted to ensure continuous torque generation. The inductance characteristics of the asymmetric SRM are analyzed, and the region of the rotor position is categorized into linear regions and nonlinear regions with several key rotor positions and threshold values of self-inductance. A simple analytical model of the phase self-inductance profile of the asymmetric rotor SRM is proposed, which only requires a few linear equations, to replace the conventional look-up table. A pulse injection-based position estimation method is proposed based on the aforementioned analytical model. Short voltage pulses are injected into both phases at the same time to determine the position where the rotor is actually located at standstill. The proposed position detection method is simple and requires no extra circuitry. The simulation results are given and show the proposed estimation method can acquire a precise rotor position accurately at a standstill condition.


2019 ◽  
Vol 39 (3) ◽  
pp. 302-309
Author(s):  
Yousuf Sohrabinasab ◽  
Babak Ganji

In the present paper, a comprehensive electromagnetic simulation model based on finite element method (FEM) is introduced for the switched reluctance motor (SRM) by which important electromagnetic characteristics are predicted for the multiphase excitation mode. The inputs of the model are the design data and control parameters and it considers different arrangements of the phase winding connections. The simulation model is developed totally in ANSYS parametric design language (APDL) as a parametric model and it can be used easily for different types of the SRM. Carrying out 2D finite element transient analysis in the simulation model, flux density waveforms within the motor are predicted and a procedure is developed for core loss determination of the SRM operating under multiphase excitation. Applying the introduced simulation model to an 8/6 SRM, simulation results are presented for operation with simultaneous two- phase excitation.


1999 ◽  
Vol 35 (5) ◽  
pp. 1067-1075 ◽  
Author(s):  
Jin-Woo Ahn ◽  
Seok-Gyu Oh ◽  
Jae-Won Moon ◽  
Young-Moon Hwang

Sign in / Sign up

Export Citation Format

Share Document