Novel adaptive power control of a Direct-drive PM wind generation system in a micro grid

Author(s):  
Lijun He ◽  
Yongdong Li ◽  
Ronald Harley
2013 ◽  
Vol 10 (2) ◽  
pp. 261-274 ◽  
Author(s):  
Messaoud Mayouf ◽  
Rachid Abdessemed

This paper presents an energetic comparison between two control strategies of a small size wind generation system for battery charging. The output voltage of the direct drive PMSG is connected to the battery through a switch mode rectifier. A DC-DC boost converter is used to regulate the battery bank current in order to achieve maximum power from the wind. A maximum powertracking algorithm calculates the current command that corresponds to maximum power output of the turbine. The DC-DC converter uses this current to calculate the duty cycle witch is necessary to control the pulse width modulated (PWM) active switching device (IGPT). The system overview and modeling are presented including characteristics of wind turbine, generator, batteries, power converter, control system, and supervisory system. A simulation of the system is performed using MATLAB/SIMULINK.


Author(s):  
B. Vidhya ◽  
K. N. Srinivas

<p>This research work, titled Small Scale Wind Generation System, reported in part I and part II, proposes modeling, analysis and control of a small scale wind energy conversion system employing a direct driven Flux Reversal Generator (FRG) connected to the micro grid through a Quasi-Z-Source Inverter (QZSI). The application of QZSI using FRG to feed micro grid is proposed for the first time in this research work. The QZSI can realize buck/boost, inversion and power conditioning in a single stage with improved reliability. Also it features a wide range of voltage gain which is suitable for applications in wind systems, due to the fact that the wind generator output varies widely with wind velocity. In addition, the modified Space Vector PWM (SVPWM) technique is proposed in this paper to satisfy the shoot-through characteristic of QZSI. This also adds to the contribution of this research work. In this part I of this full research, modelling of the small scale FRG for wind system using Finite Element Analysis (FEA) is presented. The major parameter of FRG viz, voltage, current, torque and power are analyzed, validated and then represented in d-q model. The simulation results are validated with the analytical results. An experimental set-up to run the full procedure reported in this paper. These results form the basis for part II of this research work.</p>


Sign in / Sign up

Export Citation Format

Share Document