scholarly journals A Newton-type current injection model of UPFC for studying low frequency oscillations

Author(s):  
K.M. Son ◽  
R.H. Lasseter
2013 ◽  
Vol 10 (2) ◽  
pp. 349-364
Author(s):  
Amin Safari ◽  
Ali Shayanfar ◽  
Ahad Kazemi

This paper proposes a novel current injection model of Pulse width Modulation based Series Compensator (PWMSC), as new FACTS controller, for damping of low frequency oscillations. The PWMSC operates as a means of continuous control of the degree of series compensation through the variation of the duty cycle of a train of fixed frequency-pulses. The methodology is tested on the sample single machine power system including PWMSC controller by performing computer simulations for small and large distributions. MATLAB/ Simulink software package was used for the simulations.


2021 ◽  
pp. 105444
Author(s):  
Chun-Chuan Chen ◽  
Antonella Macerollo ◽  
Hoon-Ming Heng ◽  
Ming-Kuei Lu ◽  
Chon-Haw Tsai ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 488
Author(s):  
Yerganat Khojakhan ◽  
Kyoung-Min Choo ◽  
Junsin Yi ◽  
Chung-Yuen Won

In this paper, a stator inductance identification process is proposed. The process is based on a three-level neutral-point-clamped (NPC) inverter-fed induction motor (IM) drive with a standstill condition. Previously, a low-speed alternating current (AC) injection test for stator inductance identification was proposed to overcome practical problems in conventional identification methods for three-level NPC inverter-based IM drives. However, the low-speed AC injection test-based identification method has some problems if a heavy load or mechanical brake is connected, as these can forcibly bring the rotor to a standstill during parameter identification. Since this low-speed testing-based identification assumes the motor torque is considerably lower in low-speed operations, some inaccuracy is inevitable in this kind of standstill condition. In this paper, the proposed current injection speed generator is based on the previously studied low-speed test-based stator inductance identification method, but the proposed approach gives more accurate estimates under the aforementioned standstill conditions. The proposed method regulates the speed for sinusoidal low-frequency AC injection on the basis of the instantaneous reactive and air-gap active power ratio. This proposed stator inductance identification method is more accurate than conventional fixed low-frequency AC signal injection identification method for three-level NPC inverter-fed IM drive systems with a locked-rotor standstill condition. The proposed method’s accuracy and reliability were verified by simulation and experiment using an 18.5 kW induction motor.


Sign in / Sign up

Export Citation Format

Share Document