injection test
Recently Published Documents


TOTAL DOCUMENTS

267
(FIVE YEARS 46)

H-INDEX

18
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Guoqing Liu ◽  
Jie Wang ◽  
Christine Ehlig-Economides

Abstract Recent diagnostic fracture injection test (DFIT) data presented on a Bourdet log-log diagnostic plot showed derivative slope of 0 in the before closure (BC) portion of the DFIT response. Some works qualitatively describe it as radial flow. This behavior has not been quantitatively analyzed, modeled and matched. The present work disagrees with the hypothesis of radial flow and successfully matches the relatively flat trend in the Bourdet derivative with a model dominated by friction dissipation coupled with tip extension. The flat trend in Bourdet derivative occurs shortly after shut-in during the before closure period. Because a flat derivative trend suggests diffusive radial flow, our first approach was to consider the possibility that an open crack at a layer interface stopped the fracture propagation and caused the apparent radial flow behavior observed in falloff data. However, a model that coupled pressure falloff from diffusive flow into a layer interface crack with pressure falloff from closure of a fracture that propagated up to the layer interface failed to reproduce the observed response. Subsequently, we discovered that existing models could match the data without considering the layer interface crack. We found that data processing is very important to what is observed in derivative trends and can mislead the behavior diagnosis. We succeeded to match one field DFIT case showing an obvious early flat trend. The presence and dominance of geomechanics, coupled with diffusive flow, disqualify the description of the flat trend in Bourdet derivative as radial flow. Instead, flow friction coupled with tip extension can completely match the observed behavior. Based on our model, cases with a long flat trend have large magnitude near-wellbore tortuosity friction loss and relatively long tip extension distance. Further, we match the near wellbore tortuosity behavior with rate raised to a power lower than the usually assumed 0.5. The significance of these analyses relates to two key factors. First, large magnitude near wellbore tortuosity friction loss increases the pressure required for fracture propagation during pumping. Second, tip extension is a way to dissipate high pumping pressure when very low formation permeability impedes leakoff. Matching transient behavior subject to the presence of both of these factors requires lowering the near-wellbore tortuosity exponent.


2022 ◽  
Author(s):  
Erfan Mustafa Al lawe ◽  
Adnan Humaidan ◽  
Afolabi Amodu ◽  
Mike Parker ◽  
Oscar Alvarado ◽  
...  

Abstract Zubair formation in West Qurna field, is one of the largest prolific reservoirs comprising of oil bearing sandstone layers interbedded with shale sequences. An average productivity index of 6 STB/D/psi is observed without any types of stimulation treatment. As the reservoir pressure declines from production, a peripheral water injection strategy was planned in both flanks of the reservoir to enhance the existing wells production deliverability. The peripheral injection program was initiated by drilling several injectors in the west flank. Well A1 was the first injector drilled and its reservoir pressure indicated good communication with the up-dip production wells. An injection test was conducted, revealing an estimated injectivity index of 0.06 STB//D/psi. Candidate well was then re-perforated and stimulated with HF/HCl mud acid, however no significant improvement in injectivity was observed due to the complex reservoir mineralogy and heterogeneity associated to the different targeted layers. An extended high-pressure injection test was performed achieving an injectivity index of 0.29 STB/D/psi at 4500 psi. As this performance was sub-optimal, a proppant fracture was proposed to achieve an optimal injection rate. A reservoir-centric fracture model was built, using the petrophysical and geo-mechanical properties from the Zubair formation, with the objective of optimizing the perforation cluster, fracture placement and injectivity performance. A wellhead isolation tool was utilized as wellhead rating was not able to withstand the fracture model surface pressure; downhole gauges were also installed to provide an accurate analysis of the pressure trends. The job commenced with a brine injection test to determine the base-line injectivity profile. The tubing volume was then displaced with a linear gel to perform a step-rate / step-down test. The analysis of the step-rate test revealed the fracture extension pressure, which was set as the maximum allowable injection pressure when the well is put on continuous injection. The step-down test showed significant near wellbore tortuosity with negligible perforation friction. A fracture fluid calibration test was then performed to validate the integrated model leak-off profile, fracture gradient and young’s modulus; via a coupled pressure fall-off and temperature log analysis. Based on the fluid efficiency, the pad volume was adjusted to achieve a tip screen-out. The job was successfully pumped and tip screen-out was achieved after pumping over ~90% of the planned proppant volume. A 7 days post-frac extended injection test was then conducted, achieving an injection rate of 12.5 KBWD at 1300 psi with an injectivity index of 4.2 STB/D/psi. These results proved that the implementation of a reservoir-centric Proppant Fracture treatment, can drastically improve the water injection strategy and field deliverability performance even in good quality rock formations. This first integrated fracture model and water injection field strategy, represents a building platform for further field development optimization plans in Southern Iraq.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6709
Author(s):  
Dongyue Zhang ◽  
Zhenqian Ma ◽  
Yihuai Zou ◽  
Hongfei Xie ◽  
Ruichong Guan

To provide the most effective comprehensive performance grouting material ratio, in this experimental investigation, a total of eight grouted specimens with two water-cement ratios (0.45:1, 0.55:1) and four different superfine cement contents (0%, 30%, 70%, 100%) were evaluated. Based on a uniaxial compression test, the fractal dimension of the fragments, a mercury injection test, and scanning electron microscopy, the effects of the superfine cement content on the strength characteristics and microscopic characteristics of the grouted specimens were studied. The results showed that increasing the superfine cement content could enhance the compressive and tensile strength of the grouted specimens and reduce the fractal dimension of the fragments and the porosity of the grouted specimens. The superfine cement content increased from 0% to 70% when the water-cement ratio was 0.45:1. The compressive strength of the grouted specimens increased from 16.7 MPa to 26.3 MPa, and the fractal dimension decreased from 1.8645 to 1.2301. When the water-cement ratio was 0.55:1, the compressive strength of the grouted specimens increased from 10.5 MPa to 20.6 MPa, and the fractal dimension value decreased from 2.2955 to 1.4458. When the superfine cement content increased from 0% to 100%, the water-cement ratio was 0.45:1. The porosity of the grouted specimens was reduced from 28.41% to 21.62%. When the water-cement ratio was 0.55:1, the porosity of the grouted specimens was reduced from 33.33% to 29.46%.


2021 ◽  
Author(s):  
Weiming Wang ◽  
Bing Li ◽  
Weiqiang Zhang ◽  
Hongyi Yu ◽  
Luming Li

2021 ◽  
pp. 1-43
Author(s):  
Juan Camilo Acosta ◽  
Son T. Dang ◽  
Carl H. Sondergeld ◽  
Chandra S. Rai

Hydraulic fracturing (HF) and horizontal drilling are essential to the development of shale gas and oil. Production depends on the stimulation success. During fracture initiation, propagation, and closure, cracks emit acoustic waves; these can be monitored in real time as microseismics in the field and as acoustic emissions (AEs) in the laboratory. AEs are the laboratory equivalent of field-scale microseismics and contain detailed information about HF fracture mechanics. The number of acoustic events correlates with the number of induced fractures and hence the stimulation volume. Three HF protocols under dry conditions were carried out on Tennessee sandstone: (1) a constant injection rate, (2) a precyclic injection, and (3) a variable-rate injection test. All three tests were performed under the same principal stress conditions: vertical stress of 10.3 MPa (1500 psi), minimum horizontal stress of 3.5 MPa (500 psi), and maximum horizontal stress of 20.7 MPa (3000 psi). In total, 16 piezoelectric transducers were mounted around a cylindrical sample to record the AEs. We have performed postsignal processing to extract AE event attributes, including the amplitudes, signal-to-noise ratio, arrival time, event location (with the velocity-anisotropy input), and frequency analyses. The AE events associated with the constant-rate injection test possessed the lowest frequencies (150–270 kHz). The variable-rate test AE events possessed higher frequencies (160–310 kHz), whereas the precyclic injection had events with the highest frequencies, peaking at 330 kHz. Acoustic events before failure had lower amplitudes, but higher frequency compared to those recorded postbreakdown, suggesting different failure modes. Precyclic injection induced the greatest number of locatable events before and after failure.


2021 ◽  
Vol 11 (8) ◽  
pp. 3898-3903
Author(s):  
Nobuyuki Higashino ◽  
Tetsuo Sonomura ◽  
Daisaku Ito ◽  
Kodai Fukuda ◽  
Akira Ikoma ◽  
...  

Data in Brief ◽  
2021 ◽  
Vol 36 ◽  
pp. 107035
Author(s):  
Stefan Heldt ◽  
Bo Wang ◽  
Linwei Hu ◽  
Götz Hornbruch ◽  
Klas Lüders ◽  
...  

2021 ◽  
pp. 106249
Author(s):  
Justine Molron ◽  
Niklas Linde ◽  
Philippe Davy ◽  
Ludovic Baron ◽  
Caroline Darcel ◽  
...  

Author(s):  
Davide Geremia ◽  
Christian David ◽  
Fanny Descamps ◽  
Beatriz Menéndez ◽  
Christophe Barnes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document