Network impacts of high penetration of photovoltaic solar power systems

Author(s):  
J H R Enslin
Author(s):  
Shoichiro Mihara ◽  
Takashi Saito ◽  
Yutaro Kobayashi ◽  
Hiroshi Kanai

Mathematics ◽  
2018 ◽  
Vol 6 (9) ◽  
pp. 158
Author(s):  
Farzaneh Pourahmadi ◽  
Payman Dehghanian

Allocation of the power losses to distributed generators and consumers has been a challenging concern for decades in restructured power systems. This paper proposes a promising approach for loss allocation in power distribution systems based on a cooperative concept of game-theory, named Shapley Value allocation. The proposed solution is a generic approach, applicable to both radial and meshed distribution systems as well as those with high penetration of renewables and DG units. With several different methods for distribution system loss allocation, the suggested method has been shown to be a straight-forward and efficient criterion for performance comparisons. The suggested loss allocation approach is numerically investigated, the results of which are presented for two distribution systems and its performance is compared with those obtained by other methodologies.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Meng-Hui Wang

Due to the complex parameters of a solar power system, the designer not only must think about the load demand but also needs to consider the price, weight, and annual power generating capacity (APGC) and maximum power of the solar system. It is an important task to find the optimal solar power system with many parameters. Therefore, this paper presents a novel decision-making method based on the extension theory; we call it extension decision-making method (EDMM). Using the EDMM can make it quick to select the optimal solar power system. The paper proposed this method not only to provide a useful estimated tool for the solar system engineers but also to supply the important reference with the installation of solar systems to the consumer.


1977 ◽  
Vol 16 (4) ◽  
pp. 181-198 ◽  
Author(s):  
Jesse C. Denton
Keyword(s):  

2015 ◽  
Vol 1116 ◽  
pp. 94-129 ◽  
Author(s):  
Maimoon Atif ◽  
Fahad A. Al-Sulaiman

This chapter starts with a background about concentrating solar power systems and thermal energy storage systems and then a detailed literature review about concentrated solar power systems and supercritical Brayton carbon dioxide cycles. Next, a mathematical model was developed and presented which generates and optimizes a heliostat field effectively. This model was developed to demonstrate the optimization of a heliostat field using differential evolution, which is an evolutionary algorithm. The current model illustrates how to employ the developed model and its advantages. The optimization process calculates the optical performance parameters at every step of the optimization considering all the heliostats; thus yields accurate results as discussed in this chapter. On the other hand, complete mathematical model of supercritical CO2Brayton cycles when integrated with solar thermal power tower system was presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document