A low-cost-ZVS-Class-E converter using PT

Author(s):  
Weiping Zhang ◽  
Dongyan Zhang ◽  
Yuhua Wang ◽  
Yaai Chen ◽  
Yuanchao Liu ◽  
...  
Keyword(s):  
Low Cost ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. 7-13
Author(s):  
N. Deltimple ◽  
S. Dréan ◽  
E. Kerhervé ◽  
B. Martineau ◽  
D. Belot

This work presents a two-stage 60 GHz Power Amplifier designed in a 65nm CMOS technology dedicated to low cost Wireless Personal Area Network (WPAN) applications. In order to provide a high efficiency operation, the PA is based on a Class E power stage. A Class F driver stage is also designed to provide a square waveform signal to the Class-E power stage. To realize the output networks of both driver and power stage at 60 GHz, distributed elements are used instead of lumped elements. The post-layout simulation results show a saturated output power of 15 dBm with a peak PAE of 26% at 60 GHz. It achieves a gain of 15dB at 60 GHz.


2004 ◽  
Vol 44 (2) ◽  
pp. 103-106 ◽  
Author(s):  
Y. Qin ◽  
S. Gao ◽  
A. Sambell ◽  
E. Korolkiewicz

2021 ◽  
Author(s):  
Jean-Claude Leslie Clarke

High efficiency Class-E Power Amplifiers (PA) are difficult to analytically design using the original design equations. We present a high frequency (HF) Class-E PA design methodology that simplifies design in this thesis. A high-efficiency Class-E PA was designed using a low-cost power FET by following this design-flow. Due to their small size, it’s difficult to design efficient MCR-WPT resonators for portable electronics. We propose a novel multi-layer MCR-WPT Printed Spiral Coil (PSC) design and design methodology. Two MCR-WPT PSC resonators were designed for smartphones and tablets to meet the Rezence Self-Resonant Frequency and efficiency specifications using this novel design and design methodology. The MCR-WPT resonators power transfer efficiency is reduced when their separation distance is below the optimal Critical Coupling Distance (CCD) due to frequency splitting. We present a novel maximum-peak detection and auto-tuning circuit that automatically improves efficiency using capacitive tuning when the separation distance is below the CCD.


2021 ◽  
Author(s):  
Jean-Claude Leslie Clarke

High efficiency Class-E Power Amplifiers (PA) are difficult to analytically design using the original design equations. We present a high frequency (HF) Class-E PA design methodology that simplifies design in this thesis. A high-efficiency Class-E PA was designed using a low-cost power FET by following this design-flow. Due to their small size, it’s difficult to design efficient MCR-WPT resonators for portable electronics. We propose a novel multi-layer MCR-WPT Printed Spiral Coil (PSC) design and design methodology. Two MCR-WPT PSC resonators were designed for smartphones and tablets to meet the Rezence Self-Resonant Frequency and efficiency specifications using this novel design and design methodology. The MCR-WPT resonators power transfer efficiency is reduced when their separation distance is below the optimal Critical Coupling Distance (CCD) due to frequency splitting. We present a novel maximum-peak detection and auto-tuning circuit that automatically improves efficiency using capacitive tuning when the separation distance is below the CCD.


Author(s):  
Y. L. Chen ◽  
S. Fujlshiro

Metastable beta titanium alloys have been known to have numerous advantages such as cold formability, high strength, good fracture resistance, deep hardenability, and cost effectiveness. Very high strength is obtainable by precipitation of the hexagonal alpha phase in a bcc beta matrix in these alloys. Precipitation hardening in the metastable beta alloys may also result from the formation of transition phases such as omega phase. Ti-15-3 (Ti-15V- 3Cr-3Al-3Sn) has been developed recently by TIMET and USAF for low cost sheet metal applications. The purpose of the present study was to examine the aging characteristics in this alloy.The composition of the as-received material is: 14.7 V, 3.14 Cr, 3.05 Al, 2.26 Sn, and 0.145 Fe. The beta transus temperature as determined by optical metallographic method was about 770°C. Specimen coupons were prepared from a mill-annealed 1.2 mm thick sheet, and solution treated at 827°C for 2 hr in argon, then water quenched. Aging was also done in argon at temperatures ranging from 316 to 616°C for various times.


Author(s):  
J. D. Muzzy ◽  
R. D. Hester ◽  
J. L. Hubbard

Polyethylene is one of the most important plastics produced today because of its good physical properties, ease of fabrication and low cost. Studies to improve the properties of polyethylene are leading to an understanding of its crystalline morphology. Polyethylene crystallized by evaporation from dilute solutions consists of thin crystals called lamellae. The polyethylene molecules are parallel to the thickness of the lamellae and are folded since the thickness of the lamellae is much less than the molecular length. This lamellar texture persists in less perfect form in polyethylene crystallized from the melt.Morphological studies of melt crystallized polyethylene have been limited due to the difficulty of isolating the microstructure from the bulk specimen without destroying or deforming it.


Author(s):  
J. Temple Black

In ultramicrotomy, the two basic tool materials are glass and diamond. Glass because of its low cost and ease of manufacture of the knife itself is still widely used despite the superiority of diamond knives in many applications. Both kinds of knives produce plastic deformation in the microtomed section due to the nature of the cutting process and microscopic chips in the edge of the knife. Because glass has no well defined slip planes in its structure (it's an amorphous material), it is very strong and essentially never fails in compression. However, surface flaws produce stress concentrations which reduce the strength of glass to 10,000 to 20,000 psi from its theoretical or flaw free values of 1 to 2 million psi. While the microchips in the edge of the glass or diamond knife are generally too small to be observed in the SEM, the second common type of defect can be identified. This is the striations (also termed the check marks or feathers) which are always present over the entire edge of a glass knife regardless of whether or not they are visable under optical inspection. These steps in the cutting edge can be observed in the SEM by proper preparation of carefully broken knives and orientation of the knife, with respect to the scanning beam.


Sign in / Sign up

Export Citation Format

Share Document