A low-cost class-E power amplifier with sine-wave drive

Author(s):  
J.F. Davis ◽  
D.B. Rutledge
2013 ◽  
Vol 8 (1) ◽  
pp. 7-13
Author(s):  
N. Deltimple ◽  
S. Dréan ◽  
E. Kerhervé ◽  
B. Martineau ◽  
D. Belot

This work presents a two-stage 60 GHz Power Amplifier designed in a 65nm CMOS technology dedicated to low cost Wireless Personal Area Network (WPAN) applications. In order to provide a high efficiency operation, the PA is based on a Class E power stage. A Class F driver stage is also designed to provide a square waveform signal to the Class-E power stage. To realize the output networks of both driver and power stage at 60 GHz, distributed elements are used instead of lumped elements. The post-layout simulation results show a saturated output power of 15 dBm with a peak PAE of 26% at 60 GHz. It achieves a gain of 15dB at 60 GHz.


2004 ◽  
Vol 44 (2) ◽  
pp. 103-106 ◽  
Author(s):  
Y. Qin ◽  
S. Gao ◽  
A. Sambell ◽  
E. Korolkiewicz

2015 ◽  
Vol E98.C (4) ◽  
pp. 377-379
Author(s):  
Jonggyun LIM ◽  
Wonshil KANG ◽  
Kang-Yoon LEE ◽  
Hyunchul KU

Author(s):  
Enyu Ma ◽  
Hui Zhao ◽  
Shuo Chen ◽  
Shuai Wang ◽  
Xin Huo ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Ahmad Fariz Hasan ◽  
Sohiful Anuar Zainol Murad ◽  
Faizah Abu Bakar

2021 ◽  
Vol 11 (9) ◽  
pp. 3727
Author(s):  
Ingrid Casallas ◽  
Carlos-Ivan Paez-Rueda ◽  
Gabriel Perilla ◽  
Manuel Pérez ◽  
Arturo Fajardo

This paper proposes an analytical expression set to determine the maximum values of currents and voltages in the Class-E Power Amplifier (PA) with Finite DC-Feed Inductance (FDI) under the following assumptions—ideal components (e.g., inductors and capacitors with infinite quality factor), a switch with zero rise and fall commutation times, zero on-resistance, and infinite off-resistance, and an infinite loaded quality factor of the output resonant circuit. The developed expressions are the average supply current, the RMS (Root Mean Square) current through the DC-feed inductance, the peak voltage and current in the switch, the RMS current through the switch, the peak voltages of the output resonant circuit, and the peak voltage and current in the PA load. These equations were obtained from the circuit analysis of this ideal amplifier and curve-fitting tools. Furthermore, the proposed expressions are a useful tool to estimate the maximum ratings of the amplifier components. The accuracy of the expressions was analyzed by the circuit simulation of twelve ideal amplifiers, which were designed to meet a wide spectrum of application scenarios. The resulting Mean Absolute Percentage Error (MAPE) of the maximum-rating constraints estimation was 2.64%.


Sign in / Sign up

Export Citation Format

Share Document