2020 ◽  
Vol 12 (16) ◽  
pp. 6386 ◽  
Author(s):  
Farzin Golzar ◽  
David Nilsson ◽  
Viktoria Martin

Wastewater contains considerable amounts of thermal energy. Heat recovery from wastewater in buildings could supply cities with an additional source of renewable energy. However, variations in wastewater temperature influence the performance of the wastewater treatment plant. Thus, the treatment is negatively affected by heat recovery upstream of the plant. Therefore, it is necessary to develop more accurate models of the wastewater temperature variations. In this work, a computational model based on artificial neural network (ANN) is proposed to calculate wastewater treatment plant influent temperature concerning ambient temperature, building effluent temperature and flowrate, stormwater flowrate, infiltration flowrate, the hour of day, and the day of year. Historical data related to the Stockholm wastewater system are implemented in MATLAB software to drive the model. The comparison of calculated and observed data indicated a negligible error. The main advantage of this ANN model is that it only uses historical data commonly recorded, without any requirements of field measurements for intricate heat transfer models. Moreover, Monte Carlo sensitivity analysis determined the most influential parameters during different seasons of the year. Finally, it was shown that installing heat exchangers in 40% of buildings would reduce 203 GWh year−1 heat loss in the sewage network. However, heat demand in WWTP would be increased by 0.71 GWh year−1, and the district heating company would recover 176 GWh year−1 less heat from treated water.


2021 ◽  
Author(s):  
Amer Hanif ◽  
Elton Frost ◽  
Fei Le ◽  
Marina Nikitenko ◽  
Mikhail Blinov ◽  
...  

Abstract Dielectric dispersion measurements are increasingly used by petrophysicists to reduce uncertainty in their hydrocarbon saturation analysis, and subsequent reserves estimation, especially when encountered with challenging environments. Some of these challenges are related to variable or unknown formation water salinity and/or a changing rock texture which is a common attribute of carbonate reservoirs found in the Middle East. A new multi-frequency, multi-spacing dielectric logging service, utilizes a sensor array scheme which provides wave attenuation and phase difference measurements at multiple depths of investigation up to 8 inches inside the formation. The improvement in depth of investigation provides a better measurement of true formation properties, however, also provides a higher likelihood of measuring radial heterogeneity due to spatially variable shallow mud-filtrate invasion. Meaningful petrophysical interpretation requires an accurate electromagnetic (EM) inversion, which accommodates this heterogeneity, while converting raw tool measurements to true formation dielectric properties. Forward modeling solvers are typically beset with a slow processing speed precluding use of complex, albeit representative, formation petrophysical models. An artificial neural network (ANN) has been trained to significantly speed up the forward solver, thus leading to implementation and real-time execution of a complex multi-layer radial inversion algorithm. The paper describes, in detail, the development, training and validation of both the ANN network and the inversion algorithm. The presented algorithm and ANN inversion has shown ability to accurately resolve mud filtrate invasion profile as well as the true formation properties of individual layers. Examples are presented which demonstrate that comprehensive, multi-frequency, multi-array, EM data sets are inverted efficiently for dis-similar dielectric properties of both invaded and non-invaded formation layers around the wellbore. The results are further utilized for accurate hydrocarbon quantification otherwise not achieved by conventional resistivity based saturation techniques. This paper presents the development of a new EM inversion algorithm and an artificial neural network (ANN) trained to significantly speed up the solution of this algorithm. This approach leads to a fast turnaround for an accurate petrophysical analysis, reserves estimate and completion decisions.


2013 ◽  
Vol 11 (6) ◽  
pp. 2709-2714
Author(s):  
Pushkar Shinde ◽  
Dr. Varsha Patil

Diabetes patients are increasing in number so it is necessary to predict , treat and diagnose the disease. Data Mining can help to provide knowledge about this disease. The knowledge extracted using Data Mining can help in treating and preventing the disease. Artificial Neural Network (ANN) can be used to create an classifier from the data. The neural network is trained using backpropagation algorithm The knowledge stored in the neural network is used to predict the disease. The knowledge stored in neural network is extracted using Pos-Neg sensitivity method. The knowledge extracted is in form of sensitivity analysis to analyze the disease and in turn help in treating the disease.


2021 ◽  
Author(s):  
Meor M. Meor Hashim ◽  
M. Hazwan Yusoff ◽  
M. Faris Arriffin ◽  
Azlan Mohamad ◽  
Dalila Gomes ◽  
...  

Abstract Stuck pipe is one of the leading causes of non-productive time (NPT) while drilling. Machine learning (ML) techniques can be used to predict and avoid stuck pipe issues. In this paper, a model based on ML to predict and prevent stuck pipe related to differential sticking (DS) is presented. The stuck pipe indicator is established by detecting and predicting abnormalities in the drag signatures during tripping and drilling activities. The solution focuses on detecting differential sticking risk via assessing hookload signatures, based on previous experience from historical wells. Therefore, selecting the proper training set has proven to be a crucial stage of model development, especially considering the challenges in data quality. The model is trained with historical wells with and without differential sticking issues. The solution is based on the Artificial Neural Network (ANN) approach. The model is designed to provide users, i.e., driller or monitoring specialist, a warning whenever a risk is identified. Since multi-step forecasting is used, the warning is given with enough time for the driller or monitoring specialist to evaluate which preventative action or intervention is necessary. The warnings are provided typically between 30 minutes and 4 hours ahead. The model validation includes the performance metrics and a confusion matrix. Practical cases with real-time wells are also provided. The ML model was proven robust and practical with our data sets, for both historical and live wells. The huge amount of data produced while drilling holds valuable information and when smartly fed into an Artificial Intelligence (AI) model, it can prevent NPT such as stuck pipe events as demonstrated in this paper.


Sign in / Sign up

Export Citation Format

Share Document