Comparison of Passive Damping based LCL Filter Design Methods for Grid-connected Voltage Source Converters

Author(s):  
P Naresh ◽  
CVS Anirudh ◽  
V. Seshadri Sravan Kumar
2013 ◽  
Vol 14 (5) ◽  
pp. 477-486 ◽  
Author(s):  
B. Chitti Babu ◽  
Anup Anurag ◽  
Tontepu Sowmya ◽  
Debati Marandi ◽  
Satarupa Bal

Abstract This article presents a control strategy for a three-phase grid interactive voltage source inverter that links a renewable energy source to the utility grid through a LCL-type filter. An optimized LCL-type filter has been designed and modeled so as to reduce the current harmonics in the grid, considering the conduction and switching losses at constant modulation index (Ma). The control strategy adopted here decouples the active and reactive power loops, thus achieving desirable performance with independent control of active and reactive power injected into the grid. The startup transients can also be controlled by the implementation of this proposed control strategy: in addition to this, optimal LCL filter with lesser conduction and switching copper losses as well as core losses. A trade-off has been made between the total losses in the LCL filter and the Total Harmonic Distortion (THD%) of the grid current, and the filter inductor has been designed accordingly. In order to study the dynamic performance of the system and to confirm the analytical results, the models are simulated in the MATLAB/Simulink environment, and the results are analyzed.


Sign in / Sign up

Export Citation Format

Share Document