Spatial modulation in layered space-time coding for image-sensor-based visible light communication

Author(s):  
Keisuke Masuda ◽  
Koji Kamakura ◽  
Takaya Yamazato
Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 702
Author(s):  
Jing-Jing Bao ◽  
Qiang Mai ◽  
Jih-Fu Tu

As an emerging technique of wireless communication, visible light communication is experiencing a boom in the global communications field, and the dream of accessing the Internet with light is fast becoming a reality. Multiple input multiple output, which is a key technique in radio frequency communication, can multiply channel capacity. However, it suffers the trouble of too large channel correlation when directly applied to visible light communication. The aims of this paper were to investigate spatial modulation and cooperative communication, then put forward a cooperative strategy based on space–time labeling diversity for indoor visible light communication systems to achieve high reliability. This scheme was conceived in two steps: (1) a cooperative indoor visible light communication system with a source luminaire, a relay luminaire, and a destination receiver was set up by employing the idea of cooperative transmission. Relative to the destination receiver, these two luminaires can be symmetric or asymmetric in geographical distribution. (2) Space–time labeling diversity of the constellations at the source luminaire was re-adjusted at the relay luminaire to enlarge the product of the distance of corresponding points on both constellations and was introduced on the basis of spatial modulation. Furthermore, total bit error ratio of the proposed cooperative indoor visible light communication system was derived. This scheme was implemented through Monte Carlo simulation. Evaluations of performance demonstrated the superiority of the cooperative strategy based on space–time labeling diversity over conventional optical transmission schemes. The presented approach in this paper could be of some value and interest to those who are working on visible light communication devices.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1350 ◽  
Author(s):  
Amira I. Zaki ◽  
Mahmoud Nassar ◽  
Moustafa H. Aly ◽  
Waleed K. Badawi

Massive multiple input multiple output (MIMO), also known as a very large-scale MIMO, is an emerging technology in wireless communications that increases capacity compared to MIMO systems. The massive MIMO communication technique is currently forming a major part of ongoing research. The main issue for massive MIMO improvements depends on the number of transmitting antennas to increase the data rate and minimize bit error rate (BER). To enhance the data rate and BER, new coding and modulation techniques are required. In this paper, a generalized spatial modulation (GSM) with antenna grouping space time coding technique (STC) is proposed. The proposed GSM-STC technique is based on space time coding of two successive GSM-modulated data symbols on two subgroups of antennas to improve data rate and to minimize BER. Moreover, the proposed GSM-STC system can offer spatial diversity gains and can also increase the reliability of the wireless channel by providing replicas of the received signal. The simulation results show that GSM-STC achieves better performance compared to conventional GSM techniques in terms of data rate and BER, leading to good potential for massive MIMO by using subgroups of antennas.


Sign in / Sign up

Export Citation Format

Share Document