led array
Recently Published Documents


TOTAL DOCUMENTS

481
(FIVE YEARS 132)

H-INDEX

30
(FIVE YEARS 7)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 633
Author(s):  
Marta Kowalkińska ◽  
Agnieszka Fiszka Borzyszkowska ◽  
Anna Grzegórska ◽  
Jakub Karczewski ◽  
Paweł Głuchowski ◽  
...  

Due to the rising concentration of toxic nitrogen oxides (NOx) in the air, effective methods of NOx removal have been extensively studied recently. In the present study, the first developed WO3/S-doped g-C3N4 nanocomposite was synthesized using a facile method to remove NOx in air efficiently. The photocatalytic tests performed in a newly designed continuous-flow photoreactor with an LED array and online monitored NO2 and NO system allowed the investigation of photocatalyst layers at the pilot scale. The WO3/S-doped-g-C3N4 nanocomposite, as well as single components, were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer–Emmett–Teller surface area analysis (BET), X-ray fluorescence spectroscopy (XRF), X-ray photoemission spectroscopy method (XPS), UV–vis diffuse reflectance spectroscopy (DR/UV–vis), and photoluminescence spectroscopy with charge carriers’ lifetime measurements. All materials exhibited high efficiency in photocatalytic NO2 conversion, and 100% was reached in less than 5 min of illumination under simulated solar light. The effect of process parameters in the experimental setup together with WO3/S-doped g-C3N4 photocatalysts was studied in detail. Finally, the stability of the composite was tested in five subsequent cycles of photocatalytic degradation. The WO3/S-doped g-C3N4 was stable in time and did not undergo deactivation due to the blocking of active sites on the photocatalyst’s surface.


Photonics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
Mingzhi Zhao ◽  
Tomoyuki Miyamoto

Optical wireless power transmission (OWPT) is a technology that supplies energy remotely. Due to the great advantages of long transmission distances, high directionality, no electromagnetic interference noise, and loose safety regulations, light emitting diode (LED) based OWPT systems become appropriate candidates for powering various applications, especially for the Internet of things (IoT). In this paper, improved LED-OWPT systems are proposed based on a collimation scheme for optimizing the system dimension and output. In a single LED configuration, the system dimension is compressed by 46% while the high transmission efficiency is maintained. As for the LED-array system, the dimension is compressed by 56%, and the output is enhanced by 40%. In the experiment, a high electricity output of 532 mW is achieved at 1 m transmission distance. In addition, the effect of misalignment between LED and lens and the potential of long-distance transmission are clarified in the LED-array OWPT system.


2021 ◽  
Author(s):  
Jack Bramham ◽  
Alexander Golovanov

Abstract In situ illumination of liquid-state nuclear magnetic resonance (NMR) samples makes it possible for a wide range of light-dependent chemical and biological phenomena to be studied by the powerful analytical technique. However, the position of an NMR sample deep within the bore of the spectrometer magnet renders such illumination challenging. Here, we demonstrate a photo-NMR insert device (NMRtorch) where a lighthead containing an LED array is attached directly to the top of an NMRtorch tube. The wall of the tube itself acts as a light guide, illuminating the sample from the outside. We explore how this new setup performs in a number of photo-NMR applications, including photoisomerisation and photo-chemically induced dynamic nuclear polarisation (photo-CIDNP), and demonstrate the potential for ultraviolet (UV) degradation studies with continuous online NMR assessment. This setup enables users of any typical liquid-state spectrometer to easily perform in situ photo-NMR experiments, using a wide range of wavelengths.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Po-Wei Chen ◽  
Po-Wen Hsiao ◽  
Hsuan-Jen Chen ◽  
Bo-Sheng Lee ◽  
Kai-Ping Chang ◽  
...  

AbstractThe mechanism of carrier recombination in downsized μ-LED chips from 100 × 100 to 10 × 10 μm2 on emission performance was systemically investigated. All photolithography processes for defining the μ-LED pattern were achieved by using a laser direct writing technique. This maskless technology achieved the glass-mask-free process, which not only can improve the exposure accuracy but also save the development time. The multi-functional SiO2 film as a passivation layer successfully reduced the leakage current density of μ-LED chips compared with the μ-LED chips without passivation layer. As decreasing the chip size to 10 × 10 μm2, the smallest chip size exhibited the highest ideality factor, which indicated the main carrier recombination at the high-defect-density zone in μ-LED chip leading to the decreased emission performance. The blue-shift phenomenon in the electroluminescence spectrum with decreasing the μ-LED chip size was due to the carrier screening effect and the band filling effect. The 10 × 10 μm2 μ-LED chip exhibited high EQE values in the high current density region with a less efficiency droop, and the max-EQE value was 18.8%. The luminance of 96 × 48 μ-LED array with the chip size of 20 × 20 μm2 exhibited a high value of 516 nits at the voltage of 3 V.


Network ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 261-278
Author(s):  
AbdulHaseeb Ahmed ◽  
Sethuraman Trichy Viswanathan ◽  
MD Rashed Rahman ◽  
Ashwin Ashok

Optical camera communication is an emerging technology that enables communication using light beams, where information is modulated through optical transmissions from light-emitting diodes (LEDs). This work conducts empirical studies to identify the feasibility and effectiveness of using deep learning models to improve signal reception in camera communication. The key contributions of this work include the investigation of transfer learning and customization of existing models to demodulate the signals transmitted using a single LED by applying the classification models on the camera frames at the receiver. In addition to investigating deep learning methods for demodulating a single VLC transmission, this work evaluates two real-world use-cases for the integration of deep learning in visual multiple-input multiple-output (MIMO), where transmissions from a LED array are decoded on a camera receiver. This paper presents the empirical evaluation of state-of-the-art deep neural network (DNN) architectures that are traditionally used for computer vision applications for camera communication.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2696
Author(s):  
Yu-Ming Huang ◽  
Jo-Hsiang Chen ◽  
Yu-Hau Liou ◽  
Konthoujam James Singh ◽  
Wei-Cheng Tsai ◽  
...  

Quantum dot (QD)-based RGB micro-LED technology is seen as one of the most promising approaches towards full color micro-LED displays. In this work, we present a novel nanoporous GaN (NP-GaN) structure that can scatter light and host QDs, as well as a new type of micro-LED array based on an NP-GaN embedded with QDs. Compared to typical QD films, this structure can significantly enhance the light absorption and stability of QDs. As a result, the green and red QDs exhibited light conversion efficiencies of 90.3% and 96.1% respectively, leading to improvements to the luminous uniformity of the green and red subpixels by 90.7% and 91.2% respectively. This study provides a viable pathway to develop high-uniform and high-efficient color conversion micro-LED displays.


2021 ◽  
Author(s):  
Andrei Herdean

This is a simple protocol that consists of 1) 10 minutes preillumination with far red light 2) 5 minutes of illumination with actinic light 3) 5 minutes of dark adaptation with far red light qE is calculated as the differe between NPQ_Lss and NPQ_D5 qE=NPQ_Lss-NPQ_D5 qI=NPQ_D5 Protocol to be used with FluorCAM 7.0 on a PSI Open FC 800-O/1010-S. Act 2 - are the white light LED arrays ADD2 - is the far red LED array Camera is placed at ~20 cm above the measured sample. Light intensity uniformity across the 96 well plate was measured according to manufacturer instructions. !Important - protocol only works under weak far red light. Intense far red will interfere with the fluorescence measurement.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Hangyu Zhu ◽  
Shaolei Wang ◽  
Menghu Zhang ◽  
Tingyu Li ◽  
Gaohua Hu ◽  
...  

AbstractLiquid metal represents a highly conductive and inherently deformable conductor for the development of stretchable electronics. The widespread implementations of liquid metal towards functional sensors and circuits are currently hindered by the lack of a facile and scalable patterning approach. In this study, we report a fully solution-based process to generate patterned features of the liquid metal conductor. The entire process is carried out under ambient conditions and is generally compatible with various elastomeric substrates. The as-prepared liquid metal feature exhibits high resolution (100 μm), excellent electrical conductivity (4.15 × 104S cm−1), ultrahigh stretchability (1000% tensile strain), and mechanical durability. The practical suitability is demonstrated by the heterogeneous integration of light-emitting diode (LED) chips with liquid metal interconnects for a stretchable and wearable LED array. The solution-based technique reported here is the enabler for the facile patterning of liquid metal features at low cost, which may find a broad range of applications in emerging fields of epidermal sensors, wearable heaters, advanced prosthetics, and soft robotics.


Sign in / Sign up

Export Citation Format

Share Document