Proposed IEEE inertial systems terminology standard and other inertial sensor standards

Author(s):  
R.K. Curey ◽  
M.E. Ash ◽  
L.O. Thielman ◽  
C.H. Barker
Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1624 ◽  
Author(s):  
Yao Xiao ◽  
Xiaogang Ruan ◽  
Jie Chai ◽  
Xiaoping Zhang ◽  
Xiaoqing Zhu

Low-cost microelectro mechanical systems (MEMS)-based inertial measurement unit (IMU) measurements are usually affected by inaccurate scale factors, axis misalignments, and g-sensitivity errors. These errors may significantly influence the performance of visual-inertial methods. In this paper, we propose an online IMU self-calibration method for visual-inertial systems equipped with a low-cost inertial sensor. The goal of our method is to concurrently perform 3D pose estimation and online IMU calibration based on optimization methods in unknown environments without any external equipment. To achieve this goal, we firstly develop a novel preintegration method that can handle the IMU intrinsic parameters error propagation. Then, we frame IMU calibration problem into general factors so that we can easily integrate the factors into the current graph-based visual-inertial frameworks and jointly optimize the IMU intrinsic parameters as well as the system states in a big bundle. We evaluate the proposed method with a publicly available dataset. Experimental results verify that the proposed approach is able to accurately calibrate all the considered parameters in real time, leading to significant improvement of estimation precision of visual-inertial system (VINS) compared with the estimation results with offline precalibrated IMU measurements.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Vasiliy M. Tereshkov

A simple approach to gyro and accelerometer bias estimation is proposed. It does not involve Kalman filtering or similar formal techniques. Instead, it is based on physical intuition and exploits a duality between gimbaled and strapdown inertial systems. The estimation problem is decoupled into two separate stages. At the first stage, inertial system attitude errors are corrected by means of a feedback from an external aid. In the presence of uncompensated biases, the steady-state feedback rebalances those biases and can be used to estimate them. At the second stage, the desired bias estimates are expressed in a closed form in terms of the feedback signal. The estimator has only three tunable parameters and is easy to implement and use. The tests proved the feasibility of the proposed approach for the estimation of low-cost MEMS inertial sensor biases on a moving land vehicle.


2021 ◽  
Author(s):  
Andrew Verras ◽  
Roshan Thomas Eapen ◽  
Andrew B. Simon ◽  
Manoranjan Majji ◽  
Ramchander Rao Bhaskara ◽  
...  

2004 ◽  
Vol 12 (1) ◽  
pp. 27-51 ◽  
Author(s):  
Young C. Lee ◽  
Swen D. Ericson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document