Preliminary measurement of a novel 140 GHz gyro-TWT amplifier

Author(s):  
W. Hu ◽  
K.E. Kreischer ◽  
M. Shapiro ◽  
R.J. Temkin
2014 ◽  
Vol 85 (2) ◽  
pp. 023506 ◽  
Author(s):  
G. Z. Zuo ◽  
J. S. Hu ◽  
J. Ren ◽  
Z. Sun ◽  
Q. X. Yang ◽  
...  

2012 ◽  
Vol 10 (3) ◽  
pp. 30-36
Author(s):  
Jae Eun Cha ◽  
Hwa Lim Choi ◽  
Bo Wook Rhee ◽  
Hyoung Tae Kim

Author(s):  
Nardie L. J. A. Fanchamps ◽  
Lou Slangen ◽  
Paul Hennissen ◽  
Marcus Specht

AbstractThis study investigates the development of algorithmic thinking as a part of computational thinking skills and self-efficacy of primary school pupils using programmable robots in different instruction variants. Computational thinking is defined in the context of twenty-first century skills and describes processes involved in (re)formulating a problem in a way that a computer can process it. Programming robots offers specific affordances as it can be used to develop programs following a Sense-Reason-Act (SRA) cycle. The literature provides evidence that programming robots has the potential to enhance algorithmic thinking as a component of computational thinking. Specifically there are indications that pupils who use SRA-programming learn algorithmic skills better and achieve a higher level of self-efficacy in an open, scaffold learning environment than through direct instruction. In order to determine the influence of the instruction variant used, an experimental research design was made in which pupils solved algorithm-based mathematical problems (grid diagrams) in a preliminary measurement and their self-efficacy determined via a questionnaire. As an intervention, pupils learn to solve programming issues in pairs using “Lego NXT” robots and “Mindstorms” software in two instruction variants. The post-measurement consists of a Lego challenge, solving mathematical problems (grid diagrams), and a repeated self-efficacy questionnaire. This research shows an increase of our measures on algorithmic thinking dependent on the amount of SRA usage (though not significant). Programming using the SRA-cycle can be considered as the cause of the measured effect. The instruction variant used during the robotic intervention seems to play only a marginal role.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2578 ◽  
Author(s):  
Chetan Shende ◽  
Amelia Farquharson ◽  
Carl Brouillette ◽  
Wayne Smith ◽  
Stuart Farquharson

The USA is in the midst of an opioid crisis that included over 60,000 overdose fatalities in 2017, mostly unintentional. This is due to excessive use of prescription opioids and the use of very strong synthetic opioids, such as fentanyl, mixed with illicit street drugs. The ability to rapidly determine if people or packages entering the country have or contain drugs could reduce their availability, and thereby decrease the use of illicit drugs. In an effort to address this problem, we have been investigating the ability of surface-enhanced Raman spectroscopy to detect trace amounts of opioids on clothing and packages. Here, we report the measurement of codeine and fentanyl at 100 ng/mL for 5 min on a pad impregnated with gold colloids, as well as a preliminary measurement of 500 pg of fentanyl on a glass surface using one of these pads. The calculated limit of detection for this measurement was 40 pg. This data strongly suggests that these pads, used with portable Raman analyzers, would be invaluable to airport security, drug raids, crime scenes, and forensic analysis.


Sign in / Sign up

Export Citation Format

Share Document