Modeling of the Load Duration Curve Considering the Uncertainty of Renewable Generation and Load. Case Study for the Peruvian Power System

Author(s):  
Julio Fredy Chura Acero ◽  
Wilhem Rogger Limachi Viamonte ◽  
Omar Chayna Velasquez ◽  
Washington M. Soncco Vilcapaza
2014 ◽  
Vol 657 ◽  
pp. 689-693
Author(s):  
Răzvan Corneliu Lefter ◽  
Daniela Popescu ◽  
Alexandrina Untăroiu

Important investmentsare made lately in the area of district heating, as a technology capable ofhelping countries to reach sustainability goals. In Romania, European fundswere spent for transition from the 2nd to the 3rdgeneration of district heating systems. The lack of appropriate monitoringsystems in old district heating systems makes optimisation nowadays very difficult,especially because nominal values used in the first design stage areoverestimated. Realistic nominal heat loads are necessary to make goodestimations of hydraulic parameters to be used for redesign. This studyproposes a method that uses the heat load duration curve theory to identify theappropriate nominal heat loads to be used for redesign. Comparison betweenresults obtained by applying the nominal heat loads of each consumer, as theywere established in the first design stage, and the ones identified by theproposed method are analyzed in a case study. The results show that errors arein the +/- 3% band, between the metered heat consumption rates and the proposedrates. The new method can be used for the sizing of pumps and district heatingnetworks after retrofit, in order to get better adjustments of the circulationpumps and increase of the energy efficiency.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1581
Author(s):  
Deepak Kumar Gupta ◽  
Amitkumar V. Jha ◽  
Bhargav Appasani ◽  
Avireni Srinivasulu ◽  
Nicu Bizon ◽  
...  

The automatic load frequency control for multi-area power systems has been a challenging task for power system engineers. The complexity of this task further increases with the incorporation of multiple sources of power generation. For multi-source power system, this paper presents a new heuristic-based hybrid optimization technique to achieve the objective of automatic load frequency control. In particular, the proposed optimization technique regulates the frequency deviation and the tie-line power in multi-source power system. The proposed optimization technique uses the main features of three different optimization techniques, namely, the Firefly Algorithm (FA), the Particle Swarm Optimization (PSO), and the Gravitational Search Algorithm (GSA). The proposed algorithm was used to tune the parameters of a Proportional Integral Derivative (PID) controller to achieve the automatic load frequency control of the multi-source power system. The integral time absolute error was used as the objective function. Moreover, the controller was also tuned to ensure that the tie-line power and the frequency of the multi-source power system were within the acceptable limits. A two-area power system was designed using MATLAB-Simulink tool, consisting of three types of power sources, viz., thermal power plant, hydro power plant, and gas-turbine power plant. The overall efficacy of the proposed algorithm was tested for two different case studies. In the first case study, both the areas were subjected to a load increment of 0.01 p.u. In the second case, the two areas were subjected to different load increments of 0.03 p.u and 0.02 p.u, respectively. Furthermore, the settling time and the peak overshoot were considered to measure the effect on the frequency deviation and on the tie-line response. For the first case study, the settling times for the frequency deviation in area-1, the frequency deviation in area-2, and the tie-line power flow were 8.5 s, 5.5 s, and 3.0 s, respectively. In comparison, these values were 8.7 s, 6.1 s, and 5.5 s, using PSO; 8.7 s, 7.2 s, and 6.5 s, using FA; and 9.0 s, 8.0 s, and 11.0 s using GSA. Similarly, for case study II, these values were: 5.5 s, 5.6 s, and 5.1 s, using the proposed algorithm; 6.2 s, 6.3 s, and 5.3 s, using PSO; 7.0 s, 6.5 s, and 10.0 s, using FA; and 8.5 s, 7.5 s, and 12.0 s, using GSA. Thus, the proposed algorithm performed better than the other techniques.


Sign in / Sign up

Export Citation Format

Share Document