generalized gaussian distribution
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 19)

H-INDEX

14
(FIVE YEARS 3)

2020 ◽  
Vol 13 (1) ◽  
pp. 101
Author(s):  
Noorbakhsh Amiri Golilarz ◽  
Hui Gao ◽  
Saied Pirasteh ◽  
Mohammad Yazdi ◽  
Junlin Zhou ◽  
...  

The presence of noise in remote sensing satellite images may cause limitations in analysis and object recognition. Noise suppression based on thresholding neural network (TNN) and optimization algorithms perform well in de-noising. However, there are some problems that need to be addressed. Furthermore, finding the optimal threshold value is a challenging task for learning algorithms. Moreover, in an optimization-based noise removal technique, we must utilize the optimization algorithm to overcome the problem. These methods are effective at reducing noise but may blur some parts of an image, and they are time-consuming. This flaw motivated the authors to develop an efficient de-noising method to discard un-wanted noises from these images. This study presents a new enhanced adaptive generalized Gaussian distribution (AGGD) threshold for satellite and hyperspectral image (HSI) de-noising. This function is data-driven, non-linear, and it can be fitted to any image. Applying this function provides us with an optimum threshold value without using any least mean square (LMS) learning or optimization algorithms. Thus, it is possible to save the processing time as well. The proposed function contains two main parts. There is an AGGD threshold in the interval [−σn, σn], and a new non-linear function behind the interval. These combined functions can tune the wavelet coefficients properly. We applied the proposed technique to various satellite remote sensing images. We also used hyperspectral remote sensing images from AVIRIS, HYDICE, and ROSIS sensors for our experimental analysis and validation process. We applied peak signal-to-noise ratio (PSNR) and Mean Structural Similarity Index (MSSIM) to measure and evaluate the performance analysis of different de-noising techniques. Finally, this study shows the superiority of the developed method as compared with the previous TNN and optimization-based noise suppression methods. Moreover, as the results indicate, the proposed method improves PSNR values and visual inspection significantly when compared with various image de-noising methods.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2525
Author(s):  
Robert Krupiński ◽  
Eugeniusz Kornatowski

Vibroacoustic diagnostics (VM—Vibroacoustic Method) is one of the methods for diagnosing the active part of power transformers. Measurement technologies have been refined over the past several years, but the methods of analyzing data obtained in VM diagnostics are still in development. In most cases, they are based on a simple frequency spectrum analysis, and the diagnostic conclusions are subjective and depend on the expert’s professional experience. The article presents an objective method for the detection of transformer unit core damage, based on the analysis of the statistical properties of the vibration signal registered on the surface of the tank of an unloaded transformer in the steady state of vibrations (VM). The algorithm for proceeding further is: FFT analysis of the vibroacoustic signal, with the determination of the relative changes in vibration power as a function of frequency P r ( f ) and, finally, the determination of the statistic properties of the dataset P r ( f ) . The Generalized Gaussian Distribution (GGD) is used to describe the P r ( f ) set. The detector output values are the λ and p parameters of the GGD distribution. These two numerical values form the basis for the classification of the technical condition of the transformer unit core. The correctness of the described solution was verified on the example of ten pieces of 16 MVA power transformers with different operating times and degrees of wear.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yiming Huang ◽  
Hongqing Zhu

Accuracy segmentation of the nuclei and cytoplasm in Pap smear images is challenging in cervix cytological analysis. In this paper, a new fusion algorithm combining the asymmetric generalized Gaussian and Cauchy mixture model (GGCMM) with a shape constraint level set method to segment overlapping cervical smear cells is put forward. The proposed approach starts by separating nuclei and cytoplasm cluster through asymmetric GGCMM, where each component is a mixture of generalized Gaussian distribution and Cauchy distribution. The proposed asymmetric GGCMM takes into account the asymmetry of generalized Gaussian distribution and the heavier tail of Cauchy distribution. New probability distribution fits different shapes of observed data more flexibly. Then, we apply the morphological operation to remove fake nuclei which is usually much smaller than real nuclei. After that, the improved level set energy function with a distance map and a new shape prior term are applied to extract the contours of overlapping cervical cells. Due to this new level set energy function, the segmentation of every individual cell worked well, especially in overlapping areas. We evaluate the proposed method by using the ISBI 2014 Challenge Dataset. The results demonstrate that our approach outperforms existing methods in extracting overlapping cervical cells and obtains accurate cell contours.


Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 344
Author(s):  
Yueli Cui

Image quality assessment (IQA) aims to devise computational models to evaluate image quality in a perceptually consistent manner. In this paper, a novel no-reference image quality assessment model based on dual-domain feature fusion is proposed, dubbed as DFF-IQA. Firstly, in the spatial domain, several features about weighted local binary pattern, naturalness and spatial entropy are extracted, where the naturalness features are represented by fitting parameters of the generalized Gaussian distribution. Secondly, in the frequency domain, the features of spectral entropy, oriented energy distribution, and fitting parameters of asymmetrical generalized Gaussian distribution are extracted. Thirdly, the features extracted in the dual-domain are fused to form the quality-aware feature vector. Finally, quality regression process by random forest is conducted to build the relationship between image features and quality score, yielding a measure of image quality. The resulting algorithm is tested on the LIVE database and compared with competing IQA models. Experimental results on the LIVE database indicate that the proposed DFF-IQA method is more consistent with the human visual system than other competing IQA methods.


Sign in / Sign up

Export Citation Format

Share Document