Short-term Power Load Forecasting of Residential Community Based on GRU Neural Network

Author(s):  
Jiaxiang Zheng ◽  
Xingying Chen ◽  
Kun Yu ◽  
Lei Gan ◽  
Yifan Wang ◽  
...  
2014 ◽  
Vol 494-495 ◽  
pp. 1647-1650 ◽  
Author(s):  
Ling Juan Li ◽  
Wen Huang

Short-term power load forecasting is very important for the electric power market, and the forecasting method should have high accuracy and high speed. A three-layer BP neural network has the ability to approximate any N-dimensional continuous function with arbitrary precision. In this paper, a short-term power load forecasting method based on BP neural network is proposed. This method uses the three-layer neural network with single hidden layer as forecast model. In order to improve the training speed of BP neural network and the forecasting efficiency, this method firstly reduces the factors which affect load forecasting by using rough set theory, then takes the reduced data as input variables of the BP neural network model, and gets the forecast value by using back-propagation algorithm. The forecasting results with real data show that the proposed method has high accuracy and low complexity in short-term power load forecasting.


Author(s):  
Hla U May Marma ◽  
M. Tariq Iqbal ◽  
Christopher Thomas Seary

A highly efficient deep learning method for short-term power load forecasting has been developed recently. It is a challenge to improve forecasting accuracy, as power consumption data at the individual household level is erratic for variable weather conditions and random human behaviour.  In this paper, a robust short-term power load forecasting method is developed based on a Bidirectional long short-term memory (Bi-LSTM) and long short-term memory (LSTM) neural network with stationary wavelet transform (SWT). The actual power load data is classified according to seasonal power usage behaviour. For each load classification, short-term power load forecasting is performed using the developed method. A set of lagged power load data vectors is generated from the historical power load data, and SWT decomposes the vectors into sub-components. A Bi-LSTM neural network layer extracts features from the sub-components, and an LSTM layer is used to forecast the power load from each extracted feature. A dropout layer with fixed probability is added after the Bi-LSTM and LSTM layers to bolster the forecasting accuracy. In order to evaluate the accuracy of the proposed model, it is compared against other developed short-term load forecasting models which are subjected to two seasonal load classifications.


Sign in / Sign up

Export Citation Format

Share Document