Power quality control strategy for grid-connected renewable energy sources using PV array, Wind turbine and battery

Author(s):  
Labed Djamel ◽  
Boucetta Abdallah
Author(s):  
Raghu Thumu ◽  
K. Harinadha Reddy

<p>Now-a-days Renewable Energy Sources became an alternative to meet the increasing load demand because they are environmental friendly and also available abundant in nature. Among the Renewable Energy Sources, the Photo Voltaic (PV) System is gaining more attention due abundant availability of solar energy. The Maximum Power Point Tracking Technique is used to extract maximum power from the Photo Voltaic (PV) Array. When there is a need to transfer bulk amount of power from PV Array to Power Grid, the power quality issues, especially the real and reactive power flow problems, are a major concern. In this paper a novel control technique was proposed to control the power flow and to deal with power quality issues that arise when PV Array is integrated with power grid. It consists of a Fuzzy-GA based Cascaded Controller fed Flexible AC Transmission System device, namely Unified Power Flow Controller, for effective control of real and reactive power flow in grid connected photovoltaic system. The output of the Fuzzy Logic Controller is a control vector which is fine tuned by using Genetic Algorithm approach.</p>


Author(s):  
P. Venkaiah ◽  
B. K. Sarkar

Abstract The advantages of renewable energy sources are available freely in nature, inexhaustible, produce either no or little pollution and low gestation period. Among all renewable energy sources, wind energy has become one of the leading resources for power production in the world as well as in the India. According to WWEA, the wind turbine installation capacity in the world has been reached over 539.291GW by the end of 2017. The entire wind power installed capacity by the end of 2017 covers more than 5% of global demand of electricity. In India, the present wind power installation capacity on October, 2017 was over 32.7GW and wind energy contribution is 55% of the total renewable energy capacity in the country. Inspite of having sharp growth rate in wind in India, only a fraction of wind energy has been tapped until now out of 302 GW wind potential which is available above 100 m height on shore. Practical horizontal axis wind turbine converts kinetic energy in the wind into useful energy by using airfoil blades. Blade element momentum (BEM) theory becomes very popular due to its simplicity in mathematical calculation as well as accuracy. Hydraulic pitch actuation system has certain advantages due to its versatility, ability to produce constant force and torque irrespective of the disturbances outside of the system, ease and accuracy of control, simplicity, safety and economy. In the present study a semi rotary actuator has been utilized for turbine pitch actuation. In order to extract maximum power from available wind, fractional order PID controller (FOPID) has been developed for pitch control of wind turbine rotor blade. The performances of PID as well as FOPID controller have been compared with available wind data. The performance of FOPID controller was satisfactory compare to PID controller.


2014 ◽  
Vol 1008-1009 ◽  
pp. 179-182
Author(s):  
Iveta Gressová

Our planet gives us many mineral sources, but they have a big disadvantage. They are finite. Non-renewable energy sources are enough only for decades, exceptionally for centuries. Current generation is aware of the importance of using other energy sources, such as sunlight, wind, rain, tides, waves and geothermal heat. These energy sources are renewable. It means that they come from sources, which are naturally replenished on a human timescale. One of these sources is wind energy. Use of this kind of energy source needs an initial investment, but it can reduce cost of running a household and other sectors. This article is about Savonius wind turbine and its use for the needs of public lighting.


2015 ◽  
Author(s):  
Sayem Zafar ◽  
Mohamed Gadalla

A renewable energy harvesting system is designed and tested for micro power generation. Such systems have applications ranging from mobile use to off-grid remote applications. This study analyzed the use of micro power generation for small unmanned aerial vehicle (UAV) flight operations. The renewable energy harvesting system consisted of a small wind turbine, flexible type PV panels and a small fuel cell. Fuel cell is considered the stable source while PV and wind turbine produced varying power output. The load of around 250 W is simulated by a small motor. The micro wind turbine with the total length of 4.5 m and the disk diameter of 1.8 m is tested. The micro wind turbine dimensions make it big enough to be used to charge batteries yet small enough to be installed on rooftops or easily transportable. The wind turbine blades are installed at an angle of 22°, with respect to the disk plane, as it gives the highest rotation. The voltage and current output for the corresponding RPM and wind speeds are recorded for the wind turbine. Two 2 m and a single 1 m long WaveSol Light PV panels are tested. The PV tests are conducted to get the current and voltage output with respect to the solar flux. The variation in solar flux represented the time of day and seasons. A 250 W PEM fuel cell is tested to run the desired load. Fuel cell’s hydrogen pressure drop is recorded against the output electrical power and the run time is recorded. System performance is evaluated under different operating and environmental conditions. Data is collected for a wide range of conditions to analyze the usability of renewable energy harvesting system. This energy harvesting method significantly improves the usability and output of the renewable energy sources. It also shows that small renewable energy systems have existing applications.


Sign in / Sign up

Export Citation Format

Share Document