Optimal power-flow solutions for power system planning

1972 ◽  
Vol 60 (1) ◽  
pp. 64-70 ◽  
Author(s):  
J. Peschon ◽  
D.W. Bree ◽  
L.P. Hajdu
Author(s):  
Belkacem Mahdad

In this chapter, an interactive tool using graphic user interface (GUI) environment-based MATLAB is proposed to solve practical optimal power system planning and control. The main particularity of the proposed tool is to assist student and researchers understanding the mechanism search of new metaheuristic methods. The proposed tool allows users to interact dynamically with the program. The users (students or experts) can set parameters related to a specified metaheuristic method to clearly observe the effect of choosing parameters on the solution quality. In this chapter, a new global optimization method named grey wolf optimizer (GWO) and pattern search algorithm (PS) have been successfully applied within the interactive tool to solve the optimal power flow problem. The robustness of the two proposed metaheuristic methods is validated on many standard power system tests. The proposed interactive optimal power flow tool is expected to be a useful support for students and experts specialized in power system planning and control.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2091 ◽  
Author(s):  
Ulf Philipp Müller ◽  
Birgit Schachler ◽  
Malte Scharf ◽  
Wolf-Dieter Bunke ◽  
Stephan Günther ◽  
...  

The energy transition towards renewable and more distributed power production triggers the need for grid and storage expansion on all voltage levels. Today’s power system planning focuses on certain voltage levels or spatial resolutions. In this work we present an open source software tool eGo which is able to optimize grid and storage expansion throughout all voltage levels in a developed top-down approach. Operation and investment costs are minimized by applying a multi-period linear optimal power flow considering the grid infrastructure of the extra-high and high-voltage (380 to 110 kV) level. Hence, the common differentiation of transmission and distribution grid is partly dissolved, integrating the high-voltage level into the optimization problem. Consecutively, optimized curtailment and storage units are allocated in the medium voltage grid in order to lower medium and low voltage grid expansion needs, that are consequently determined. Here, heuristic optimization methods using the non-linear power flow were developed. Applying the tool on future scenarios we derived cost-efficient grid and storage expansion for all voltage levels in Germany. Due to the integrated approach, storage expansion and curtailment can significantly lower grid expansion costs in medium and low voltage grids and at the same time serve the optimal functioning of the overall system. Nevertheless, the cost-reducing effect for the whole of Germany was marginal. Instead, the consideration of realistic, spatially differentiated time series led to substantial overall savings.


Author(s):  
Ulf Philipp Müller ◽  
Birgit Schachler ◽  
Malte Scharf ◽  
Wolf-Dieter Bunke ◽  
Stephan Günther ◽  
...  

The energy transition towards renewable and more decentral power production triggers the need for grid and storage expansion on all voltage levels. Today's power system planning focuses on certain voltage levels or spatial resolutions. In this work we present an open source software tool eGo which is able to optimize grid and storage expansion throughout all voltage levels in a developed top-down approach. System costs are minimized by applying a linear optimal power flow considering the grid infrastructure of the extra-high and high-voltage (380 to 110 kV) level. Hence, the common differentiation of transmission and distribution grid is partly dissolved, integrating the high-voltage level into the optimization problem. Consecutively, optimized curtailment and storage units are allocated in the medium voltage grid in order to lower medium and low voltage grid expansion needs, that are consequently determined. Here, heuristic optimization methods using the non-linear power flow were developed. Applying the tool on future scenarios we derived cost-efficient grid and storage expansion for all voltage levels in Germany. Due to the integrated approach storage expansion and curtailment can significantly lower grid expansion costs in medium and low voltage grids and at the same time serve the optimal functioning of the overall system. Nevertheless, the cost-reducing effect for the whole of Germany was marginal. Instead, the consideration of realistic, spatially differentiated time series lead to substantial overall savings.


Author(s):  
Oludamilare Bode Adewuyi ◽  
Harun Or Rashid Howlader ◽  
Isaiah Opeyemi Olaniyi ◽  
David Abdul Konneh ◽  
Tomonobu Senjyu

2012 ◽  
Vol 590 ◽  
pp. 195-200
Author(s):  
Meng Jen Chen ◽  
Yu Chi Wu ◽  
Wen Shiush Chen ◽  
Pei Wei Huang ◽  
Tsung Wei Tsai

In this paper, a framework for integrating a real-time digital simulator and EMS-OPF program is proposed and addressed, through two different communication architectures: asynchronous and synchronous. Validation of these communication architectures is carried out by Ethernet UDP/IP (asynchronous) and analog channels of IO card (synchronous). With this framework, both dynamic and steady-state performance of a power system can be studied easily in real-time mode.


Energy ◽  
2014 ◽  
Vol 68 ◽  
pp. 140-147 ◽  
Author(s):  
Hadi Norouzi ◽  
Sajjad Abedi ◽  
Reza Jamalzadeh ◽  
Milad Ghiasi Rad ◽  
Seyed Hossein Hosseinian

Sign in / Sign up

Export Citation Format

Share Document