Model Inversion Attacks for Prediction Systems: Without Knowledge of Non-Sensitive Attributes

Author(s):  
Seira Hidano ◽  
Takao Murakami ◽  
Shuichi Katsumata ◽  
Shinsaku Kiyomoto ◽  
Goichiro Hanaoka
2018 ◽  
Vol E101.D (11) ◽  
pp. 2665-2676
Author(s):  
Seira HIDANO ◽  
Takao MURAKAMI ◽  
Shuichi KATSUMATA ◽  
Shinsaku KIYOMOTO ◽  
Goichiro HANAOKA

2021 ◽  
Author(s):  
Alice Portal ◽  
Paolo Ruggieri ◽  
Froila M. Palmeiro ◽  
Javier García-Serrano ◽  
Daniela I. V. Domeisen ◽  
...  

AbstractThe predictability of the Northern Hemisphere stratosphere and its underlying dynamics are investigated in five state-of-the-art seasonal prediction systems from the Copernicus Climate Change Service (C3S) multi-model database. Special attention is devoted to the connection between the stratospheric polar vortex (SPV) and lower-stratosphere wave activity (LSWA). We find that in winter (December to February) dynamical forecasts initialised on the first of November are considerably more skilful than empirical forecasts based on October anomalies. Moreover, the coupling of the SPV with mid-latitude LSWA (i.e., meridional eddy heat flux) is generally well reproduced by the forecast systems, allowing for the identification of a robust link between the predictability of wave activity above the tropopause and the SPV skill. Our results highlight the importance of November-to-February LSWA, in particular in the Eurasian sector, for forecasts of the winter stratosphere. Finally, the role of potential sources of seasonal stratospheric predictability is considered: we find that the C3S multi-model overestimates the stratospheric response to El Niño–Southern Oscillation (ENSO) and underestimates the influence of the Quasi–Biennial Oscillation (QBO).


2020 ◽  
Vol 12 (8) ◽  
pp. 1319
Author(s):  
Xiaofan Sun ◽  
Bingnan Wang ◽  
Maosheng Xiang ◽  
Liangjiang Zhou ◽  
Shuai Jiang

The Gaussian vertical backscatter (GVB) model has a pivotal role in describing the forest vertical structure more accurately, which is reflected by P-band polarimetric interferometric synthetic aperture radar (Pol-InSAR) with strong penetrability. The model uses a three-dimensional parameter space (forest height, Gaussian mean representing the strongest backscattered power elevation, and the corresponding standard deviation) to interpret the forest vertical structure. This paper establishes a two-dimensional GVB model by simplifying the three-dimensional one. Specifically, the two-dimensional GVB model includes the following three cases: the Gaussian mean is located at the bottom of the canopy, the Gaussian mean is located at the top of the canopy, as well as a constant volume profile. In the first two cases, only the forest height and the Gaussian standard deviation are variable. The above approximation operation generates a two-dimensional volume only coherence solution space on the complex plane. Based on the established two-dimensional GVB model, the three-baseline inversion is achieved without the null ground-to-volume ratio assumption. The proposed method improves the performance by 18.62% compared to the three-baseline Random Volume over Ground (RVoG) model inversion. In particular, in the area where the radar incidence angle is less than 0.6 rad, the proposed method improves the inversion accuracy by 34.71%. It suggests that the two-dimensional GVB model reduces the GVB model complexity while maintaining a strong description ability.


Author(s):  
Pavle Šćepanović ◽  
Frederik A. Döring

AbstractFor a broad range of applications, flight mechanics simulator models have to accurately predict the aircraft dynamics. However, the development and improvement of such models is a difficult and time consuming process. This is especially true for helicopters. In this paper, two rapidly applicable and implementable methods to derive linear input filters that improve the simulator model are presented. The first method is based on model inversion, the second on feedback control. Both methods are evaluated in the time domain, compared to recorded helicopter flight test data, and assessed based on root mean square errors and the Qualification Test Guide bounds. The best results were achieved when using the first method.


Sign in / Sign up

Export Citation Format

Share Document