Optimum load shedding strategies in distribution systems

Author(s):  
A.M. Leite da Silva ◽  
A.M. Cassula ◽  
R. Billinton ◽  
L.A.F. Manso
2019 ◽  
Vol 217 ◽  
pp. 01020 ◽  
Author(s):  
Margarita Chulyukova ◽  
Nikolai Voropai

The paper considers the possibilities of increasing the flexibility of power distribution systems by real-time load management. The principles of the implementation of special automatic systems for this purpose are proposed. These systems enable some loads of specific consumers of the power distribution system switched to islanded operation to “shift” from the daily maximum to the minimum, which makes some generators available to connect certain essential consumers disconnected earlier by under-frequency load shedding system to the power system. The approach under consideration is illustrated by a power system with distributed generation.


2020 ◽  
Vol 12 (15) ◽  
pp. 6234 ◽  
Author(s):  
Sohail Sarwar ◽  
Hazlie Mokhlis ◽  
Mohamadariff Othman ◽  
Munir Azam Muhammad ◽  
J. A. Laghari ◽  
...  

In recent years significant changes in climate have pivoted the distribution system towards renewable energy, particularly through distributed generators (DGs). Although DGs offer many benefits to the distribution system, their integration affects the stability of the system, which could lead to blackout when the grid is disconnected. The system frequency will drop drastically if DG generation capacity is less than the total load demand in the network. In order to sustain the system stability, under-frequency load shedding (UFLS) is inevitable. The common approach of load shedding sheds random loads until the system’s frequency is recovered. Random and sequential selection results in excessive load shedding, which in turn causes frequency overshoot. In this regard, this paper proposes an efficient load shedding technique for islanded distribution systems. This technique utilizes a voltage stability index to rank the unstable loads for load shedding. In the proposed method, the power imbalance is computed using the swing equation incorporating frequency value. Mixed integer linear programming (MILP) optimization produces optimal load shedding strategy based on the priority of the loads (i.e., non-critical, semi-critical, and critical) and the load ranking from the voltage stability index of loads. The effectiveness of the proposed scheme is tested on two test systems, i.e., a 28-bus system that is a part of the Malaysian distribution network and the IEEE 69-bus system, using PSCAD/EMTDC. Results obtained prove the effectiveness of the proposed technique in quickly stabilizing the system’s frequency without frequency overshoot by disconnecting unstable non-critical loads on priority. Furthermore, results show that the proposed technique is superior to other adaptive techniques because it increases the sustainability by reducing the load shed amount and avoiding overshoot in system frequency.


2018 ◽  
Vol 12 (1) ◽  
pp. 383-391 ◽  
Author(s):  
Vito Calderaro ◽  
Vincenzo Galdi ◽  
Giuseppe Graber ◽  
Antonio Piccolo

2014 ◽  
Vol 68 (3) ◽  
Author(s):  
Aziah Khamis ◽  
H. Shareef ◽  
A. Mohamed ◽  
Erdal Bizkevelci

Voltage stability is one of the major concerns in operational and planning of modern power system. Many strategies have been implemented to avoid voltage collapse, which the load shedding considered as the last option. However, optimization is needed to estimate the minimum amount to shed so as to prevent voltage instability. In this paper, an effective method is presented for estimating the optimal amount of load to be shed in a distribution system based on the gravitational search algorithm (GSA). The voltage stability margin (VSM) of the system has been considered in the objective function. The optimization problem is formulated to maximize the VSM of the system and at the same time satisfying the operation and security constraints. The optimum solution depends on the predefined constraints such as the number of load buses available to shed and the maximum amount of load permitted to shed. Simulation result conducted on the IEEE 33 bus radial distribution system shows that the system voltage stability can be improved by optimally shedding the loads at critical system buses. The results also indicate that the numbers of load buses available for load shedding does not have a significant impact on voltage stability margin, but it is highly dependent on the maximum amount of load permitted to shed. 


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
L. O. Mogaka ◽  
G. N. Nyakoe ◽  
M. J. Saulo

The main aim of a power utility company is to supply quality and uninterrupted power to customers. This becomes a growing challenge as the continued increase in population calls for proportional increase in power supply to additional loads. If not well planned, this steady increase in power demand can lead to voltage collapse and eventual power blackouts. In instances where power demand exceeds generation within islanded microgrid or due to an occurrence of a contingency, optimum load shedding should be put in place so as to enhance system security and stability of the power system. Load shedding is traditionally done based on undervoltage measurements or underfrequency measurements of a given section of the grid. However, when compared with conventional methods, metaheuristic algorithms perform better in accurate determination of optimal amount of load to be shed during a contingency or undersupply situations. In this study, an islanded microgrid with high penetration of Renewable Energy Sources (RESs) is analyzed, and then Artificial Bee Colony (ABC) algorithm is applied for optimal load shedding. The results are then compared with those of Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and GA-PSO hybrid. Both generation and overload contingencies are considered on a standard IEEE 30-bus system on a MATLAB platform. Different buses are assigned priority indices which forms the basis of the determination of which loads and what amount of load to shed at any particular time.


Sign in / Sign up

Export Citation Format

Share Document