Degradation of polyester film exposed to accelerated indoor damp heat aging

Author(s):  
Karnav Kanuga
Keyword(s):  
Robotica ◽  
2020 ◽  
pp. 1-17
Author(s):  
Wenzhong Yan ◽  
Ankur Mehta

SUMMARY To improve the accessibility of robotics, we propose a design and fabrication strategy to build low-cost electromechanical systems for robotic devices. Our method, based on origami-inspired cut-and-fold and E-textiles techniques, aims at minimizing the resources for robot creation. Specifically, we explore techniques to create robots with the resources restricted to single-layer sheets (e.g., polyester film) and conductive sewing threads. To demonstrate our strategy’s feasibility, these techniques are successfully integrated into an electromechanical oscillator (about 0.40 USD), which can generate electrical oscillation under constant-current power and potentially be used as a simple robot controller in lieu of additional external electronics.


Author(s):  
S. Berdous ◽  
D. Berdous ◽  
N. Saidi-Amroun ◽  
D. E. Akretche ◽  
M. Saidi
Keyword(s):  

1965 ◽  
Vol 68 (5) ◽  
pp. 998-1001
Author(s):  
Rempei GOTO ◽  
Naomi HAYAMA
Keyword(s):  

Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1524 ◽  
Author(s):  
Arrieta-Baez ◽  
Hernández Ortíz ◽  
Terán ◽  
Torres ◽  
Gómez-Patiño

10,16-dihydroxyhexadecanoic acid obtained from agroresidual tomato waste, was oxidized to produce 7-oxohexadecanedioic acid in good yield (>70%) and purified without oxidation side products in one step. Polycondensation with 1,8-octanediol, yielded the polyester (poly(ω-carboxyl PA-co-OD)) with Mw = 2155.15 and Mn = 1637.27. The best enzymatic reaction conditions to get the polyester were using lipase CAL-B (%-by-wt relative to monomer) in toluene as a solvent for 1 h at 60 °C. The poly(ω-carboxyl PA-co-OD) was characterized by 1H- and 13C-NMR, mass spectrometry (MALDI-TOF) and the polyester film formed with a Langmuir-Blodgett Trough was analyzed by means of spectroscopic ellipsometry and atomic force microscopy.


Author(s):  
Xiaoli Li ◽  
Zhaoshui Yu ◽  
Jinli Xu ◽  
Yanshan Pan ◽  
Wei Bo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document