Effective large-scale PV integration: Methods to match load profile with actual PV output

Author(s):  
Stefan Krauter
2019 ◽  
Vol 9 (9) ◽  
pp. 1748 ◽  
Author(s):  
Amra Jahic ◽  
Mina Eskander ◽  
Detlef Schulz

The city of Hamburg has decided to electrify its bus fleets. The two public transportation companies in this city expect to operate up to 1500 buses by 2030. In order to accomplish this ambitious goal, both companies need to build an appropriate charging infrastructure. They have both decided to implement the centralized depot charging concept. Buses can therefore charge only at the depot and do not have the possibility for opportunity charging at intermediate stations. The load profile of such a bus depot is highly dependent on the charging schedule of buses. Without an intelligent scheduling system, the buses charge on demand as soon as they arrive to the depot. This can lead to an unevenly distributed load profile with high load peaks, which is problematic for the local grid as well as for the equipment dimensioning at the depot. Charging scheduling on large-scale bus depots is a relatively new and poorly researched topic. This paper addresses the issue and proposes two algorithms for charging scheduling on large-scale bus depots with the goal to minimize the peak load. The schedules created with the proposed algorithms were both tested and validated in the Bus Depot Simulator, a cosimulation platform used for bus depot simulations.


1985 ◽  
Vol 6 (3) ◽  
pp. 153-179 ◽  
Author(s):  
Coleman B. Brosilow ◽  
Yin-Chang Liu ◽  
Jeffrey Cook ◽  
John Klatt

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Jiaqi Li ◽  
Chengxuan Yu ◽  
Lifeng Ma ◽  
Jingjing Wang ◽  
Guoji Guo

AbstractWith the development of single-cell RNA sequencing (scRNA-seq) technology, analysts need to integrate hundreds of thousands of cells with multiple experimental batches. It is becoming increasingly difficult for users to select the best integration methods to remove batch effects. Here, we compared the advantages and limitations of four commonly used Scanpy-based batch-correction methods using two representative and large-scale scRNA-seq datasets. We quantitatively evaluated batch-correction performance and efficiency. Furthermore, we discussed the performance differences among the evaluated methods at the algorithm level.


2009 ◽  
Vol 180 (11) ◽  
pp. 2166-2174 ◽  
Author(s):  
Edoardo Milotti ◽  
Alessio Del Fabbro ◽  
Roberto Chignola

1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


Sign in / Sign up

Export Citation Format

Share Document