Toward Higher Efficiency of Low-Cost Flexible Single-Crystal-Like GaAs Thin Film Solar Cells on Metal Tapes

Author(s):  
Sara Pouladi ◽  
Monika Rathi ◽  
Pavel Dutta ◽  
Seung Kyu Oh ◽  
Devendra Khatiwada ◽  
...  
MRS Bulletin ◽  
1993 ◽  
Vol 18 (10) ◽  
pp. 42-44 ◽  
Author(s):  
Hans-W. Schock

CuInSe2 and related chalcopyrite semiconductors are among the compound semiconductors that have been considered for thin solar cells for about the past 20 years. Recently, high efficiencies close to 17% have been achieved. This result could be the starting point for a new category of solar cells—high-performance thin-film cells—that would combine the high performance of single-crystal cells with possible low-cost thin-film processing.The development of CuInSe2 cells started in 1974, when single-crystal cells with an efficiency of 12% were reported by a group at Bell Laboratories. Soon after, thin-film solar cells were demonstrated by Kazmerski et al. CuInSe2 thin films have been deposited by evaporating the CuInSe2 source material to completion and adding Se from a separate source. It was found that straight-forward evaporation of the compound does not generally lead to films with stoichiometric composition. By coevaporation of the elements, films with any desired composition can be obtained, provided there is appropriate process control. A “bilayer” recipe developed by Boeing, namely combining Cu-rich films and In-rich films, solved the problem of combining larger grains with suitable electronic properties. By this method, the first CuInSe2 thin-film solar cells with an efficiency exceeding 10% conversion efficiency were fabricated.Alloying CuInSe2 with CuGaSe2 and CuInS2 considerably increases the potential for the innovative development of solar cells from these materials. The energy gaps covered by these alloys range from about 1 eV to about 2.4 eV The possibility of increasing the energy gap and achieving absorber layers with graded bandgaps has many advantages for the application of these materials in thin-film solar cell modules.


2019 ◽  
Vol 2 (5) ◽  
pp. 3114-3119 ◽  
Author(s):  
Devendra Khatiwada ◽  
Monika Rathi ◽  
Pavel Dutta ◽  
Sicong Sun ◽  
Carlos Favela ◽  
...  

2018 ◽  
Vol 8 (7) ◽  
pp. 1195 ◽  
Author(s):  
Yanru Chen ◽  
Xianglin Mei ◽  
Xiaolin Liu ◽  
Bin Wu ◽  
Junfeng Yang ◽  
...  

The CdTe nanocrystal (NC) is an outstanding, low-cost photovoltaic material for highly efficient solution-processed thin-film solar cells. Currently, most CdTe NC thin-film solar cells are based on CdSe, ZnO, or CdS buffer layers. In this study, a wide bandgap and Cd-free ZnSe NC is introduced for the first time as the buffer layer for all solution-processed CdTe/ZnSe NC hetero-junction thin-film solar cells with a configuration of ITO/ZnO/ZnSe/CdTe/MoOx/Au. The dependence of the thickness of the ZnSe NC film, the annealing temperature and the chemical treatment on the performance of NC solar cells are investigated and discussed in detail. We further develop a ligand-exchanging strategy that involves 1,2-ethanedithiol (EDT) during the fabrication of ZnSe NC film. An improved power conversion efficiency (PCE) of 3.58% is obtained, which is increased by 16.6% when compared to a device without the EDT treatment. We believe that using ZnSe NC as the buffer layer holds the potential for developing high-efficiency, low cost, and stable CdTe NC-based solar cells.


2010 ◽  
Vol 4 (3-4) ◽  
pp. 58-60 ◽  
Author(s):  
Jan Ungelenk ◽  
Veronika Haug ◽  
Aina Quintilla ◽  
Erik Ahlswede

Solar Energy ◽  
2019 ◽  
Vol 185 ◽  
pp. 34-40 ◽  
Author(s):  
Xin-Shou Wang ◽  
Qing-Miao Fan ◽  
Qing-Wen Tian ◽  
Zheng-Ji Zhou ◽  
Dong-Xing Kou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document