Real-Time Monitoring of Tool Wear in High-Speed Milling of Aircraft Structural Parts

Author(s):  
Bo Pang ◽  
Shi-Jie Guo ◽  
Jing-Lei Wang ◽  
Hai-Bin Li
2021 ◽  
Author(s):  
Qimeng Liu ◽  
Jinkai Xu ◽  
Huadong Yu

Abstract Large-scale slender beam structures with weak stiffness are widely used in the aviation field. There will be a great deformation problem in machining because the overall stiffness of slender beam parts is lower. Firstly, the cutting mechanism and stability theory of the Ti6Al4V material are analyzed, and then the auxiliary support is carried out according to the machining characteristics of the slender beam structure. The feasibility of the deformation suppression measures for the slender beam is verified by experiments. The experimental analysis shows that on the basis of fulcrum auxiliary support, the filling of paraffin melt material is capable of increasing the damping of the whole system, improving the overall stiffness of the machining system, and inhibiting the chatter effect of machining. This method is effective to greatly improve the accuracy and efficiency during machining of slender beam parts. On the premise of the method of processing support with the combination of fulcrum and paraffin, if the tool wear is effectively controlled, the high precision machining of large-scale slender beams can be realized effectively, and the machining deformation of slender beams can be reduced. Although high speed milling has excellent machining effect on the machining accuracy of titanium alloy materials, severe tool wear is observed during high-speed milling of titanium alloy materials. Therefore, high-speed milling of titanium alloy slender beam is suitable to be carried out in the finishing process, which can effectively control tool wear and improve the machining accuracy of parts. Finally, the process verification of typical weak stiffness slender beam skeleton parts is carried out. Through the theoretical and technical support of the experimental scheme, the machining of large-scale slender beam structure parts with weak stiffness is realized.


2006 ◽  
Vol 315-316 ◽  
pp. 588-592 ◽  
Author(s):  
Wei Zhao ◽  
Ning He ◽  
Liang Li ◽  
Z.L. Man

High speed milling experiments using nitrogen-oil-mist as cutting medium were undertaken to investigate the characteristics of tool wear for Ti-6Al-4V Alloy, a kind of important and commonly used titanium alloy in the aerospace and automobile industries. Uncoated carbide tools have been applied in the experiments. The cutting speed was 300 m/min. The axial depth of cut and the radial depth of cut were kept constant at 5.0 mm and 1.0 mm, respectively. The feed per tooth was 0.1 mm/z. Optical and scanning electron microscopes have been utilized to determine the wear mechanisms of the cutting tools, and energy spectrum analysis has been carried out to measure the elements distribution at the worn areas. Meanwhile, comparisons were made to discuss the influence of different cutting media such as nitrogen-oil-mist and air-oil–mist upon the tool wear. The results of this investigation indicate that the tool life in nitrogen-oil-mist is significantly longer than that in air-oil-mist, and nitrogen-oil-mist is more suitable for high speed milling of Ti-6Al-4V alloy than air-oil-mist.


Author(s):  
Zhaijun Lu ◽  
Weijia Huang ◽  
Mu Zhong ◽  
Dongrun Liu ◽  
Tian Li ◽  
...  

Real-time monitoring of overturning coefficients is very important for ensuring the safety of high-speed trains passing through complex terrain sections under strong wind conditions. In recent years, the phenomenon of “car swaying” that occurs when trains pass through the complex terrain has brought new challenges to ensuring the safety and riding comfort of passengers. In China, more and more high-speed trains are facing strong wind environments when running in complex terrain sections. However, due to the limitation of objective conditions, so far, only a few economical and effective methods of measurement have been developed that are suitable for real-time monitoring of the overturning coefficient of commercial vehicles. Therefore, considering the applicability and universality of such a monitoring method, this study presents a method for measuring the overturning coefficient of trains using the primary suspension system under strong winds. A vehicle test was carried out to verify the accuracy of the method. The results show that after correction, the overturning coefficient obtained from the primary suspension system is generally consistent with the overturning coefficient obtained from the instrumented wheelset. The method of measuring the overturning coefficient of trains in strong wind environments with the primary suspension system is, thus, proven feasible.


2016 ◽  
Vol 90 (9-12) ◽  
pp. 3265-3273 ◽  
Author(s):  
Kaining Shi ◽  
Junxue Ren ◽  
Dinghua Zhang ◽  
Zhengyi Zhai ◽  
Xinchun Huang

Author(s):  
Emel Kuram

Tool coatings can improve the machinability performance of difficult-to-cut materials such as titanium alloys. Therefore, in the current work, high-speed milling of Ti6Al4V titanium alloy was carried out to determine the performance of various coated cutting tools. Five types of coated carbide inserts – monolayer TiCN, AlTiN, TiAlN and two layers TiCN + TiN and AlTiN + TiN, which were deposited by physical vapour deposition – were employed in the experiments. Tool wear, cutting force, surface roughness and chip morphology were evaluated and compared for different coated tools. To understand the tool wear modes and mechanisms, detailed scanning electron microscope analysis combined with energy dispersive X-ray of the worn inserts were conducted. Abrasion, adhesion, chipping and mechanical crack on flank face and coating delamination, adhesion and crater wear on rake face were observed during high-speed milling of Ti6Al4V titanium alloy. In terms of tool wear, the lowest value was obtained with TiCN-coated insert. It was also found that at the beginning of the machining pass TiAlN-coated insert and at the end of machining TiCN-coated insert gave the lowest cutting force and surface roughness values. No change in chip morphology was observed with different coated inserts.


2014 ◽  
Vol 565 ◽  
pp. 36-45
Author(s):  
Hadjadj Abdechafik ◽  
Kious Mecheri ◽  
Ameur Aissa

The objective of this study is to develop a process of treatment of the vibratory signals generated during a horizontal high speed milling process without applying any coolant in order to establish a monitoring system able to improve the machining performance. Thus, many tests were carried out on the horizontal high speed centre (PCI Météor 10), in given cutting conditions, by using a milling cutter with only one insert and measured its frontal wear from its new state that is considered as a reference state until a worn state that is considered as unsuitable for the tool to be used. The results obtained show that the first harmonic follow well the evolution of frontal wear, on another hand a wavelet transform is used for signal processing and is found to be useful for observing the evolution of the wavelet approximations through the cutting tool life. The power and the root mean square (RMS) values of the wavelet transformed signal gave the best results and can be used for tool wear estimation. All this features can constitute the suitable indicators for an effective detection of tool wear and then used for the input parameters of an on-line monitoring system. Nevertheless we noted the remarkable influence of the machining cycle on the quality of measurements by the introduction of a bias on the signal; this phenomenon appears in particular in horizontal milling and in the majority of studies is ignored


Sign in / Sign up

Export Citation Format

Share Document