Automatic through the wall detection of moving targets using low-frequency ultra-wideband radar

Author(s):  
Anthony Martone ◽  
Kenneth Ranney ◽  
Roberto Innocenti
Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1377
Author(s):  
Guangyao Yang ◽  
Shengbo Ye ◽  
Feng Zhang ◽  
Yicai Ji ◽  
Xiaojuan Zhang ◽  
...  

The miniaturized high-gain antenna is required in portable, ultra-wideband radar systems. However, the miniaturization, ultra-wideband and high gain often restrict each other in the antenna design. In this paper, a dual-polarized, double-slot, antipodal tapered slot antenna with a double-layer, dual-loop structure and novel slot edges is presented. The proposed magnetic dual-loop structure has the capacity to reduce the low cut-off frequency of the double-slot tapered slot antenna by weakening the resonance and coupling. In addition, the high gain, low sidelobe level (SLL), and low cross-polarization level are achieved in the boresight direction. A novel gradient slot profile is designed to improve the low-frequency directivity of the tapered slot antenna without affecting the matching. To feed the antenna elements, a kind of wideband, balun-divider structure is designed. The dual-polarized antenna is combined by two orthogonal elements in a cross configuration without galvanic contact or influence to performance. The measured results show that the impedance bandwidth of the proposed antenna is 0.6~4 GHz, and the maximum gain is 11 dBi. The isolation between the two antenna ports is better than 32 dB, and the cross-polarization discrimination (XPD) is better than 20 dB.


2018 ◽  
Vol 15 (3) ◽  
pp. 409-413 ◽  
Author(s):  
Yongping Song ◽  
Jun Hu ◽  
Yongpeng Dai ◽  
Tian Jin ◽  
Zhimin Zhou

Author(s):  
Abdulhameed Habeeb Alghanimi ◽  
Rashid Ali Fayadh

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4027
Author(s):  
Timo Lauteslager ◽  
Michal Maslik ◽  
Fares Siddiqui ◽  
Saad Marfani ◽  
Guy D. Leschziner ◽  
...  

Respiratory rate (RR) is typically the first vital sign to change when a patient decompensates. Despite this, RR is often monitored infrequently and inaccurately. The Circadia Contactless Breathing Monitor™ (model C100) is a novel device that uses ultra-wideband radar to monitor RR continuously and un-obtrusively. Performance of the Circadia Monitor was assessed by direct comparison to manually scored reference data. Data were collected across a range of clinical and non-clinical settings, considering a broad range of user characteristics and use cases, in a total of 50 subjects. Bland–Altman analysis showed high agreement with the gold standard reference for all study data, and agreement fell within the predefined acceptance criteria of ±5 breaths per minute (BrPM). The 95% limits of agreement were −3.0 to 1.3 BrPM for a nonprobability sample of subjects while awake, −2.3 to 1.7 BrPM for a clinical sample of subjects while asleep, and −1.2 to 0.7 BrPM for a sample of healthy subjects while asleep. Accuracy rate, using an error margin of ±2 BrPM, was found to be 90% or higher. Results demonstrate that the Circadia Monitor can effectively and efficiently be used for accurate spot measurements and continuous bedside monitoring of RR in low acuity settings, such as the nursing home or hospital ward, or for remote patient monitoring.


Sign in / Sign up

Export Citation Format

Share Document