Fault Classification in an IEEE 30 Bus System using Convolutional Neural Network

Author(s):  
Anurag Tikariha ◽  
Baidyanath N. Bag ◽  
Narendra D. Londhe ◽  
Ritesh Raj
Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Rafia Nishat Toma ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Condition monitoring is used to track the unavoidable phases of rolling element bearings in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The convolutional neural network (CNN) has been used as an effective tool to recognize and classify multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of vibration signals, it is quite difficult to achieve high classification accuracy when directly using the original signal as the input of a convolution neural network. To evaluate the fault characteristics, ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration signal is converted into a 2-D image using a continuous wavelet transform with information from the damage frequency band. This also transfers the signal into a time-frequency domain and reduces the nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions, which possess a discriminative pattern relative to the types of faults, are used to train an appropriate CNN model. Additionally, with the reconstructed signal, two different methods are used to create an image to compare with our proposed image creation approach. The vibration signal is collected from a self-designed testbed containing multiple bearings of different fault conditions. Two other conventional CNN architectures are compared with our proposed model. Based on the results obtained, it can be concluded that the image generated with fault signatures not only accurately classifies multiple faults with CNN but can also be considered as a reliable and stable method for the diagnosis of fault bearings.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 41889-41904 ◽  
Author(s):  
Farkhanda Aziz ◽  
Azhar Ul Haq ◽  
Shahzor Ahmad ◽  
Yousef Mahmoud ◽  
Marium Jalal ◽  
...  

Author(s):  
Wilson Leal Rodrigues Junior ◽  
Dyogo Medeiros Reis ◽  
Fabbio Anderson Silva Borges ◽  
Flavio Henrique Duarte Araujo ◽  
Antonio Oseas de Carvalho Filho ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1096
Author(s):  
Chenggong Zhang ◽  
Daren Zha ◽  
Lei Wang ◽  
Nan Mu

This paper develops a novel soft fault diagnosis approach for analog circuits. The proposed method employs the backward difference strategy to process the data, and a novel variant of convolutional neural network, i.e., convolutional neural network with global average pooling (CNN-GAP) is taken for feature extraction and fault classification. Specifically, the measured raw domain response signals are firstly processed by the backward difference strategy and the first-order and the second-order backward difference sequences are generated, which contain the signal variation and the rate of variation characteristics. Then, based on the one-dimensional convolutional neural network, the CNN-GAP is developed by introducing the global average pooling technical. Since global average pooling calculates each input vector’s mean value, the designed CNN-GAP could deal with different lengths of input signals and be applied to diagnose different circuits. Additionally, the first-order and the second-order backward difference sequences along with the raw domain response signals are directly fed into the CNN-GAP, in which the convolutional layers automatically extract and fuse multi-scale features. Finally, fault classification is performed by the fully connected layer of the CNN-GAP. The effectiveness of our proposal is verified by two benchmark circuits under symmetric and asymmetric fault conditions. Experimental results prove that the proposed method outperforms the existing methods in terms of diagnosis accuracy and reliability.


Sign in / Sign up

Export Citation Format

Share Document