Data-Driven Agile Requirements Elicitation through the Lenses of Situational Method Engineering

Author(s):  
Xavier Franch ◽  
Aron Henriksson ◽  
Jolita Ralyte ◽  
Jelena Zdravkovic
Author(s):  
Laila Niedrite ◽  
Maris Solodovnikova Treimanis ◽  
Liga Grundmane

There are many methods in the area of data warehousing to define requirements for the development of the most appropriate conceptual model of a data warehouse. There is no universal consensus about the best method, nor are there accepted standards for the conceptual modeling of data warehouses. Only few conceptual models have formally described methods how to get these models. Therefore, problems arise when in a particular data warehousing project, an appropriate development approach, and a corresponding method for the requirements elicitation, should be chosen and applied. Sometimes it is also necessary not only to use the existing methods, but also to provide new methods that are usable in particular development situations. It is necessary to represent these new methods formally, to ensure the appropriate usage of these methods in similar situations in the future. It is also necessary to define the contingency factors, which describe the situation where the method is usable.This chapter represents the usage of method engineering approach for the development of conceptual models of data warehouses. A set of contingency factors that determine the choice between the usage of an existing method and the necessity to develop a new one is defined. Three case studies are presented. Three new methods: userdriven, data-driven, and goal-driven are developed according to the situation in the particular projects and using the method engineering approach.


Author(s):  
José de Souza Filho ◽  
Walter Nakamura ◽  
Lígia Teixeira ◽  
Rógenis da Silva ◽  
Bruno Gadelha ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Sachiko Lim ◽  
Aron Henriksson ◽  
Jelena Zdravkovic

AbstractRequirements engineering has traditionally been stakeholder-driven. In addition to domain knowledge, widespread digitalization has led to the generation of vast amounts of data (Big Data) from heterogeneous digital sources such as the Internet of Things (IoT), mobile devices, and social networks. The digital transformation has spawned new opportunities to consider such data as potentially valuable sources of requirements, although they are not intentionally created for requirements elicitation. A challenge to data-driven requirements engineering concerns the lack of methods to facilitate seamless and autonomous requirements elicitation from such dynamic and unintended digital sources. There are numerous challenges in processing the data effectively to be fully exploited in organizations. This article, thus, reviews the current state-of-the-art approaches to data-driven requirements elicitation from dynamic data sources and identifies research gaps. We obtained 1848 hits when searching six electronic databases. Through a two-level screening and a complementary forward and backward reference search, 68 papers were selected for final analysis. The results reveal that the existing automated requirements elicitation primarily focuses on utilizing human-sourced data, especially online reviews, as requirements sources, and supervised machine learning for data processing. The outcomes of automated requirements elicitation often result in mere identification and classification of requirements-related information or identification of features, without eliciting requirements in a ready-to-use form. This article highlights the need for developing methods to leverage process-mediated and machine-generated data for requirements elicitation and addressing the issues related to variety, velocity, and volume of Big Data for the efficient and effective software development and evolution.


Author(s):  
Chad Coulin ◽  
Didar Zowghi ◽  
Abd-El-Kader Sahraoui

In this chapter they present a collaborative and situational tool called MUSTER, that has been specifically designed and developed for requirements elicitation workshops, and which utilizes, extends, and demonstrates a successful application of intelligent technologies for Computer Aided Software Engineering and Computer Aided Method Engineering. The primary objective of this tool is to improve the effectiveness and efficiency of the requirements elicitation process for software systems development, whilst addressing some of the common issues often encountered in practice through the integration of intelligent technologies. The tool also offers an example of how a group support system, coupled with artificial intelligence, can be applied to very practical activities and situations within the software development process.


2012 ◽  
pp. 620-638
Author(s):  
Chad Coulin ◽  
Didar Zowghi ◽  
Abd-El-Kader Sahraoui

In this chapter they present a collaborative and situational tool called MUSTER, that has been specifically designed and developed for requirements elicitation workshops, and which utilizes, extends, and demonstrates a successful application of intelligent technologies for Computer Aided Software Engineering and Computer Aided Method Engineering. The primary objective of this tool is to improve the effectiveness and efficiency of the requirements elicitation process for software systems development, whilst addressing some of the common issues often encountered in practice through the integration of intelligent technologies. The tool also offers an example of how a group support system, coupled with artificial intelligence, can be applied to very practical activities and situations within the software development process.


Author(s):  
Aron Henriksson ◽  
Jelena Zdravkovic

AbstractDigital transformation stimulates continuous generation of large amounts of digital data, both in organizations and in society at large. As a consequence, there have been growing efforts in the Requirements Engineering community to consider digital data as sources for requirements acquisition, in addition to human stakeholders. The volume, velocity and variety of the data make requirements discovery increasingly dynamic, but also unstructured and complex, which current elicitation methods are unable to consider and manage in a systematic and efficient manner. We propose a framework, in the form of a conceptual metamodel and a method, for continuous and automated acquisition, analysis and aggregation of heterogeneous digital sources that aims to support data-driven requirements elicitation and management. The usability of the framework is partially validated by an in-depth case study from the business sector of video game development.


Sign in / Sign up

Export Citation Format

Share Document