A new low-cost sensorless MPPT algorithm for small wind turbines

Author(s):  
Rene Aubree ◽  
Francois Auger ◽  
Ping Dai
Author(s):  
Sayem Zafar ◽  
Mohamed Gadalla

A small horizontal axis wind turbine rotor was designed and tested with aerodynamically efficient, economical and easy to manufacture blades. Basic blade aerodynamic analysis was conducted using commercially available software. The blade span was constrained such that the complete wind turbine can be rooftop mountable with the envisioned wind turbine height of around 8 m. The blade was designed without any taper or twist to comply with the low cost and ease of manufacturing requirements. The aerodynamic analysis suggested laminar flow airfoils to be the most efficient airfoils for such use. Using NACA 63-418 airfoil, a rectangular blade geometry was selected with chord length of 0.27[m] and span of 1.52[m]. Glass reinforced plastic was used as the blade material for low cost and favorable strength to weight ratio with a skin thickness of 1[mm]. Because of the resultant velocity changes with respect to the blade span, while the blade is rotating, an optimal installed angle of attack was to be determined. The installed angle of attack was required to produce the highest possible rotation under usual wind speeds while start at relatively low speed. Tests were conducted at multiple wind speeds with blades mounted on free rotating shaft. The turbine was tested for three different installed angles and rotational speeds were recorded. The result showed increase in rotational speed with the increase in blade angle away from the free-stream velocity direction while the start-up speeds were found to be within close range of each other. At the optimal angle was found to be 22° from the plane of rotation. The results seem very promising for a low cost small wind turbine with no twist and taper in the blade. The tests established that non-twisted wind turbine blades, when used for rooftop small wind turbines, can generate useable electrical power for domestic consumption. It also established that, for small wind turbines, non-twisted, non-tapered blades provide an economical yet productive alternative to the existing complex wind turbine blades.


2021 ◽  
Vol 19 ◽  
pp. 195-198
Author(s):  
J. Vilà ◽  
◽  
N. Luo ◽  
L. Pacheco ◽  
T. Pujol ◽  
...  

The installed power capacity from small wind turbines would rise in case of having higher efficiency values. The performance of these devices is very sensitive to wind conditions, especially to wind gusts and turbulence. Performance extracted from small-scale wind turbine datasheets show large variations of power output between turbulent and non-turbulent sites and often the installation in intermittent wind sites is discouraged. The use of blades with fixed positions is a clear drawback of small wind turbines. Here, we propose a design of a smart active pitch control to increase the energy generation of micro-wind turbines (< 5 kWp). The design consists of a simple mechanism that allows the rotation of the blades controlled by a low cost peripheral interface controller. The possibility to orientate the blades so as to maximise the power output at all wind conditions will increase the performance of this small wind turbines. The design is robust and economical, which will increase its potential adoptability rate by the end-user.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5906
Author(s):  
Sławomir Karyś ◽  
Paweł Stawczyk

This paper presents AC/DC converters for cost-effective small wind turbine systems. The analysis focuses on reliable, sensor-less, and low-cost solutions. A recently developed type of the three phase AC/DC two-switch converter is compared, for the first time, using simulations and experiments, with two other converters. The operating principles and control methods are discussed. Simulation results are verified experimentally and interesting conclusions are drawn. It is shown that less known converters are also attractive solutions for use in small wind turbines.


2020 ◽  
pp. 0309524X2093250
Author(s):  
Jon Leary ◽  
Hugh Piggott ◽  
Robert Howell

This article presents new insight into the real-world performance of a range of open source locally manufactured small wind turbines designed to enable sustainable rural electrification. The power performance of seven machines was measured in situ and compared to wind tunnel, test site and other in situ data to produce a set of generic power curves. This article shows that the shape and size of the curve (and therefore the energy that will be generated) varies considerably. However, over-performance was just as likely as under-performance, validating the designer’s predicted energy yields. Nonetheless, optimising the power curve by tuning the small wind turbine increased energy yields by up to 156%. Developing low-cost practical tools that can enable rapid power curve measurements in the field could help reduce uncertainty when planning rural electrification programmes and ensure that small wind turbines are able to deliver vital energy services in off-grid regions of developing countries.


2015 ◽  
Vol 28 ◽  
pp. 21-28 ◽  
Author(s):  
R.C. Adhikari ◽  
D.H. Wood ◽  
L. Sudak

Author(s):  
Alberto Arroyo ◽  
Mario Manana ◽  
Pablo B. Castro ◽  
Raquel Martinez ◽  
Ramon Lecuna ◽  
...  

2012 ◽  
Vol 36 (4) ◽  
pp. 411-431 ◽  
Author(s):  
K.C. Latoufis ◽  
G.M. Messinis ◽  
P.C. Kotsampopoulos ◽  
N.D. Hatziargyriou

2012 ◽  
pp. 1083-1088
Author(s):  
O.H. Ando Junior ◽  
M.O. Oliveira ◽  
J.M. Neto ◽  
A.D. Spacek ◽  
R.C.B. Leborgne ◽  
...  

Author(s):  
Pedro Baracat ◽  
Célia Rosolen ◽  
Raquel Miguez de Carvalho ◽  
Kamal Ismail ◽  
Willian Okita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document