UHF RFID chip impedance and sensitivity measurement using a transmission line transformer

Author(s):  
Florian Muralter ◽  
Michael Hani ◽  
Hugo Landaluce ◽  
Asier Perallos ◽  
Erwin Biebl
2017 ◽  
Vol 17 (17) ◽  
pp. 5687-5693 ◽  
Author(s):  
Apoorva Sharma ◽  
Alexander T. Hoang ◽  
Matthew S. Reynolds

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Sergio López-Soriano ◽  
Josep Parrón

Reducing tag size while maintaining good performance is one of the major challenges in radio-frequency identification applications (RFID), in particular when labeling metallic objects. In this contribution, a small size and low cost tag antenna for identifying metal objects in the European UHF band (865–868 MHz) is presented. The antenna consists of a transmission line mounted on an inexpensive thin dielectric which is proximity-coupled to a short-ended patch mounted on FR4 substrate. The overall dimensions of the tag are 33.5 × 30 × 3.1 mm. Experimental results show that, for an EIRP of 3.2 W (European regulations), such a small and cheap tag attains read ranges of about 5 m when attached to a metallic object.


2020 ◽  
Vol 92 (2) ◽  
pp. 20502
Author(s):  
Behrokh Beiranvand ◽  
Alexander S. Sobolev ◽  
Anton V. Kudryashov

We present a new concept of the thermoelectric structure that generates microwave and terahertz signals when illuminated by femtosecond optical pulses. The structure consists of a series array of capacitively coupled thermocouples. The array acts as a hybrid type microwave transmission line with anomalous dispersion and phase velocity higher than the velocity of light. This allows for adding up the responces from all the thermocouples in phase. The array is easily integrable with microstrip transmission lines. Dispersion curves obtained from both the lumped network scheme and numerical simulations are presented. The connection of the thermocouples is a composite right/left-handed transmission line, which can receive terahertz radiation from the transmission line ports. The radiation of the photon to the surface of the thermocouple structure causes a voltage difference with the bandwidth of terahertz. We examined a lossy composite right/left-handed transmission line to extract the circuit elements. The calculated properties of the design are extracted by employing commercial software package CST STUDIO SUITE.


2015 ◽  
Vol 6 (4) ◽  
pp. 171-184
Author(s):  
Liangbo Xie ◽  
Jiaxin Liu ◽  
Yao Wang ◽  
Chuan Yin ◽  
Guangjun Wen

2013 ◽  
Vol 133 (5) ◽  
pp. 957-961
Author(s):  
Yasuyoshi Okita ◽  
Futoshi Kuroki ◽  
Yuki Kawahara
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document