Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction

Author(s):  
G. Tonietti ◽  
R. Schiavi ◽  
A. Bicchi
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Irfan Hussain ◽  
Ahmad Albalasie ◽  
Mohammad I. Awad ◽  
Khaled Tamizi ◽  
Zhenwei Niu ◽  
...  

2011 ◽  
Vol 3 (3) ◽  
Author(s):  
Gianluca Palli ◽  
Giovanni Berselli ◽  
Claudio Melchiorri ◽  
Gabriele Vassura

Variable stiffness actuators can be used in order to achieve a suitable trade-off between performance and safety in robotic devices for physical human–robot interaction. With the aim of improving the compactness and the flexibility of existing mechanical solutions, a variable stiffness actuator based on the use of flexures is investigated. The proposed concept allows the implementation of a desired stiffness profile and range. In particular, this paper reports a procedure for the synthesis of a fully compliant mechanism used as a nonlinear transmission element, together with its experimental characterization. Finally, a preliminary prototype of the overall joint is depicted.


Author(s):  
Yiwei Liu ◽  
Shipeng Cui ◽  
Yongjun Sun

AbstractThe safety of human-robot interaction is an essential requirement for designing collaborative robotics. Thus, this paper aims to design a novel variable stiffness actuator (VSA) that can provide safer physical human-robot interaction for collaborative robotics. VSA follows the idea of modular design, mainly including a variable stiffness module and a drive module. The variable stiffness module transmits the motion from the drive module in a roundabout manner, making the modularization of VSA possible. As the key component of the variable stiffness module, a stiffness adjustment mechanism with a symmetrical structure is applied to change the positions of a pair of pivots in two levers linearly and simultaneously, which can eliminate the additional bending moment caused by the asymmetric structure. The design of the double-deck grooves in the lever allows the pivot to move freely in the groove, avoiding the geometric constraint between the parts. Consequently, the VSA stiffness can change from zero to infinity as the pivot moves from one end of the groove to the other. To facilitate building a manipulator in the future, an expandable electrical system with a distributed structure is also proposed. Stiffness calibration and control experiments are performed to evaluate the physical performance of the designed VSA. Experiment results show that the VSA stiffness is close to the theoretical design stiffness. Furthermore, the VSA with a proportional-derivative feedback plus feedforward controller exhibits a fast response for stiffness regulation and a good performance for position tracking.


2019 ◽  
Vol 1 (2) ◽  
pp. 80-97
Author(s):  
Jesus H Lugo

Safe interactions between humans and robots are needed in several industrial processes and service tasks. Compliance design and control of mechanisms is a way to increase safety. This article presents a compliant revolute joint mechanism using a biphasic media variable stiffness actuator. The actuator has a member configured to transmit motion that is connected to a fluidic circuit, into which a biphasic control fluid circulates. Stiffness is controlled by changing pressure of control fluid into distribution lines. A mathematical model of the actuator is presented, a model-based control method is implemented to track the desired position and stiffness, and equations relating to the dynamics of the mechanism are provided. Results from force loaded and unloaded simulations and experiments with a physical prototype are discussed. The additional information covers a detailed description of the system and its physical implementation.


2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Zhuang Zhang ◽  
Genliang Chen ◽  
Weicheng Fan ◽  
Wei Yan ◽  
Lingyu Kong ◽  
...  

Abstract Devices with variable stiffness are drawing more and more attention with the growing interests of human-robot interaction, wearable robotics, rehabilitation robotics, etc. In this paper, the authors report on the design, analysis and experiments of a stiffness variable passive compliant device whose structure is a combination of a reconfigurable elastic inner skeleton and an origami shell. The main concept of the reconfigurable skeleton is to have two elastic trapezoid four-bar linkages arranged in orthogonal. The stiffness variation generates from the passive deflection of the elastic limbs and is realized by actively switching the arrangement of the leaf springs and the passive joints in a fast, simple and straightforward manner. The kinetostatics and the compliance of the device are analyzed based on an efficient approach to the large deflection problem of the elastic links. A prototype is fabricated to conduct experiments for the assessment of the proposed concept. The results show that the prototype possesses relatively low stiffness under the compliant status and high stiffness under the stiff status with a status switching speed around 80 ms.


Soft Robotics ◽  
2015 ◽  
pp. 231-254 ◽  
Author(s):  
Sebastian Wolf ◽  
Thomas Bahls ◽  
Maxime Chalon ◽  
Werner Friedl ◽  
Markus Grebenstein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document