scholarly journals Mechanical design and analysis of a novel variable stiffness actuator with symmetrical pivot adjustment

Author(s):  
Yiwei Liu ◽  
Shipeng Cui ◽  
Yongjun Sun

AbstractThe safety of human-robot interaction is an essential requirement for designing collaborative robotics. Thus, this paper aims to design a novel variable stiffness actuator (VSA) that can provide safer physical human-robot interaction for collaborative robotics. VSA follows the idea of modular design, mainly including a variable stiffness module and a drive module. The variable stiffness module transmits the motion from the drive module in a roundabout manner, making the modularization of VSA possible. As the key component of the variable stiffness module, a stiffness adjustment mechanism with a symmetrical structure is applied to change the positions of a pair of pivots in two levers linearly and simultaneously, which can eliminate the additional bending moment caused by the asymmetric structure. The design of the double-deck grooves in the lever allows the pivot to move freely in the groove, avoiding the geometric constraint between the parts. Consequently, the VSA stiffness can change from zero to infinity as the pivot moves from one end of the groove to the other. To facilitate building a manipulator in the future, an expandable electrical system with a distributed structure is also proposed. Stiffness calibration and control experiments are performed to evaluate the physical performance of the designed VSA. Experiment results show that the VSA stiffness is close to the theoretical design stiffness. Furthermore, the VSA with a proportional-derivative feedback plus feedforward controller exhibits a fast response for stiffness regulation and a good performance for position tracking.

2011 ◽  
Vol 3 (3) ◽  
Author(s):  
Gianluca Palli ◽  
Giovanni Berselli ◽  
Claudio Melchiorri ◽  
Gabriele Vassura

Variable stiffness actuators can be used in order to achieve a suitable trade-off between performance and safety in robotic devices for physical human–robot interaction. With the aim of improving the compactness and the flexibility of existing mechanical solutions, a variable stiffness actuator based on the use of flexures is investigated. The proposed concept allows the implementation of a desired stiffness profile and range. In particular, this paper reports a procedure for the synthesis of a fully compliant mechanism used as a nonlinear transmission element, together with its experimental characterization. Finally, a preliminary prototype of the overall joint is depicted.


2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Zhuang Zhang ◽  
Genliang Chen ◽  
Weicheng Fan ◽  
Wei Yan ◽  
Lingyu Kong ◽  
...  

Abstract Devices with variable stiffness are drawing more and more attention with the growing interests of human-robot interaction, wearable robotics, rehabilitation robotics, etc. In this paper, the authors report on the design, analysis and experiments of a stiffness variable passive compliant device whose structure is a combination of a reconfigurable elastic inner skeleton and an origami shell. The main concept of the reconfigurable skeleton is to have two elastic trapezoid four-bar linkages arranged in orthogonal. The stiffness variation generates from the passive deflection of the elastic limbs and is realized by actively switching the arrangement of the leaf springs and the passive joints in a fast, simple and straightforward manner. The kinetostatics and the compliance of the device are analyzed based on an efficient approach to the large deflection problem of the elastic links. A prototype is fabricated to conduct experiments for the assessment of the proposed concept. The results show that the prototype possesses relatively low stiffness under the compliant status and high stiffness under the stiff status with a status switching speed around 80 ms.


Soft Robotics ◽  
2015 ◽  
pp. 231-254 ◽  
Author(s):  
Sebastian Wolf ◽  
Thomas Bahls ◽  
Maxime Chalon ◽  
Werner Friedl ◽  
Markus Grebenstein ◽  
...  

Author(s):  
Michael Boyarsky ◽  
Megan Heenan ◽  
Scott Beardsley ◽  
Philip Voglewede

This paper aims to emulate human motion with a robot for the purpose of improving human-robot interaction (HRI). In order to engineer a robot that demonstrates functionally similar motion to humans, aspects of human motion such as variable stiffness must be captured. This paper successfully determined the variable stiffness humans use in the context of a 1 DOF disturbance rejection task by optimizing a time-varying stiffness parameter to experimental data in the context of a neuro-motor Simulink model. The significant improved agreement between the model and the experimental data in the disturbance rejection task after the addition of variable stiffness demonstrates how important variable stiffness is to creating a model of human motion. To enable a robot to emulate this motion, a predictive stiffness model was developed that attempts to reproduce the stiffness that a human would use in a given situation. The predictive stiffness model successfully decreases the error between the neuro-motor model and the experimental data when compared to the neuro-motor model with a constant stiffness value.


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042094129
Author(s):  
Jishu Guo

The variable stiffness joint is a kind of flexible actuator with variable stiffness characteristics suitable for physical human–robot interaction applications. In the existing variable stiffness joints, the antagonistic variable stiffness joint has the advantages of simple implementation of variable stiffness mechanism and easy modular design of the nonlinear elastic element. The variable stiffness characteristics of antagonistic variable stiffness joints are realized by the antagonistic actuation of two nonlinear springs. A novel design scheme of the equivalent nonlinear torsion spring with compact structure, large angular displacement range, and desired stiffness characteristics is presented in this article. The design calculation for the equivalent quadratic torsion spring is given as an example, and the actuation characteristics of the antagonistic variable stiffness joint based on the equivalent quadratic torsion spring are illustrated. Based on the design idea of constructing the antagonistic variable stiffness joint with compact structure and high compliance, as well as the different design requirements of the joints at different positions of the multi–degrees of freedom robot arm, nine types of mechanical schemes of antagonistic variable stiffness joint with the open design concept are proposed in this article. Finally, the conceptual joint configuration schemes of the robot arm based on the antagonistic variable stiffness joint show the application scheme of the designed antagonistic variable stiffness joint in the multi–degrees of freedom robot.


Sign in / Sign up

Export Citation Format

Share Document