Scan-to-map matching using the Hausdorff distance for robust mobile robot localization

Author(s):  
M. Torres-Torriti ◽  
A. Guesalaga
Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6437
Author(s):  
Sebastian Dudzik

The paper presents research on methods of a wheeled mobile robot localization using an optical motion capture system. The results of localization based on the model of forward kinematics and odometric measurements were compared. A pure pursuit controller was used to control the robot’s behaviour in the path following tasks. The paper describes a motion capture system based on infrared cameras, including the calibration method. In addition, a method for determining the accuracy of robot location using the motion capture system, based on the Hausdorff distance, was proposed. As a result of the research it was found that the Hausdorff distance is very useful in determining the accuracy of localization of wheeled robots, especially those described by differential drive kinematics.


2019 ◽  
Vol 139 (9) ◽  
pp. 1041-1050
Author(s):  
Hiroyuki Nakagomi ◽  
Yoshihiro Fuse ◽  
Hidehiko Hosaka ◽  
Hironaga Miyamoto ◽  
Takashi Nakamura ◽  
...  

2021 ◽  
Author(s):  
Julio Fajardo ◽  
Victor Ferman ◽  
Jabes Guerra ◽  
Antonio Ribas Neto ◽  
Eric Rohmer

2009 ◽  
Vol 6 (3) ◽  
pp. 427-437 ◽  
Author(s):  
Ivan Paunovic ◽  
Darko Todorovic ◽  
Miroslav Bozic ◽  
Goran Djordjevic

The paper discusses a mobile robot localization. Due to cost and simplicity of signal processing, the ultrasonic sensors are very suitable for this application. However, their nonlinear characteristics requires thorough calibrating procedure in order to achieve reliable readings from the obstacles around the robot. Here we describe SMR400 ultrasonic sensor and its calibration procedure. The suggested calibration procedure was tested through a number of experiments, and the results are presented in this paper. .


Sign in / Sign up

Export Citation Format

Share Document