Objective function: A key contributor in Internet of Things primitive properties

Author(s):  
Bardia Safaei ◽  
Amir Mahdi Hosseini Monazzah ◽  
Taha Shahroodi ◽  
Alireza Ejlali
Author(s):  
Jie Zhang ◽  
◽  
Mantao Wang

The current communication scheduling algorithm for smart home cannot realize low latency in scheduling effect with unreasonable control of communication throughput and large energy consumption. In this paper, a communication scheduling algorithm for smart home in Internet of Things under cloud computing based on particle swarm is proposed. According to the fact that the transmission bandwidth of any data flow is limited by the bandwidth of network card of sending end and receiving end, the bandwidth limits of network card of smart home communication server are used to predict the maximum practicable bandwidth of data flow. Firstly, the initial value of communication scheduling objective function of smart home and particle swarm is set, and the objective function is taken as the fitness function of particle. Then the current optimal solution of objective function is calculated through predicted value and objective function, current position and flight speed of particle should be updated until the iteration conditions are met. Finally, the optimal solution is output, the communication scheduling of smart home is thus realized. Experiments show that this algorithm can realize low latency with small energy consumption, and the throughput is relatively reasonable.


2020 ◽  
Vol 13 (2) ◽  
pp. 159-167
Author(s):  
Robin Cyriac ◽  
Marimuthu Karuppiah

Internet of Things will be inevitable in all walks of our life, where it becomes necessary for all smart devices to have end-to-end data transfer capability. These low power and low-cost end devices need to be enabled with IPv6 address and corresponding routing mechanism for participating in Internet of Things environment. To enable fast and efficient routing in Internet of Things network and constrained with limited energy, Routing Protocol for Low-power Lossy Network (RPL) has been developed by ROLL-Work Group. As RPL is proactive and energyconserving, it has become the most promising routing protocol for Internet of Things. Nodes in Low-power Lossy Network (LLN) are designed to conserve energy by maintaining radio silence over 90% of its lifetime. It is possible to further improve the node’s lifetime and thereby considerably extending network’s longevity by performing sensible routing. Different routing structure in Internet of Things network can be attained by carefully crafting the objective function for the same set of nodes which satisfies different goals. This paper focuses on different objective functions in RPL which have been developed over time with the emphasis on energy conservation and maximizing the lifetime of the network. In this work, we have carefully studied different metric compositions used for creating an objective function. The study revealed that combining metrics provides better results in terms of energy conservation when compared to single metric defined as part of RPL standard. It was also noted that considering some metric as a constraint can increase the rate of route convergence without affecting the performance of the network.


Sign in / Sign up

Export Citation Format

Share Document