Object based modelling of hybrid electrical vehicle and power management control

Author(s):  
Alberto Bolzoni ◽  
Alessio La Bella ◽  
Davide Moschetta ◽  
Giulia Musacci ◽  
Giambattista Gruosso ◽  
...  
2013 ◽  
Vol 645 ◽  
pp. 422-425
Author(s):  
Niao Na Zhang ◽  
Zhe Zhang ◽  
Dong Jie Feng ◽  
Zhi Cheng

In order to save fuel and reduce emission of Hybrid Electrical Vehicle (HEV), a vehicle control strategy is proposed based on the system efficiency optimal. A vehicle performance simulation model has been built on Matlab/Simulink environment. The results show that, by using this vehicle control strategy, the dynamic performance and fuel economy of the vehicle are significantly improved compared with the traditional one. Finally, The vehicle control strategy has been verified by the bench test.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 404
Author(s):  
Sara J. Ríos ◽  
Daniel J. Pagano ◽  
Kevin E. Lucas

Currently, high-performance power conversion requirements are of increasing interest in microgrid applications. In fact, isolated bidirectional dc-dc converters are widely used in modern dc distribution systems. The dual active bridge (DAB) dc-dc converter is identified as one of the most promising converter topology for the mentioned applications, due to its benefits of high power density, electrical isolation, bidirectional power flow, zero-voltage switching, and symmetrical structure. This study presents a power management control scheme in order to ensure the power balance of a dc microgrid in stand-alone operation, where the renewable energy source (RES) and the battery energy storage (BES) unit are interfaced by DAB converters. The power management algorithm, as introduced in this work, selects the proper operation of the RES system and BES system, based on load/generation power and state-of-charge of the battery conditions. Moreover, a nonlinear robust control strategy is proposed when the DAB converters are in voltage-mode-control in order to enhance the dynamic performance and robustness of the common dc-bus voltage, in addition to overcoming the instability problems that are caused by constant power loads and the dynamic interactions of power electronic converters. The simulation platform is developed in MATLAB/Simulink, where a photovoltaic system and battery system are selected as the typical RES and BES, respectively. Assessments on the performance of the proposed control scheme are conducted. Comparisons with the other control method are also provided.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2915
Author(s):  
Xiuyan Peng ◽  
Bo Wang ◽  
Lanyong Zhang ◽  
Peng Su

Shipboard integrated power systems, the key technology of ship electrification, call for effective failure mode power management control strategy to achieve the safe and reliable operation in dynamic reconfiguration. Considering switch reconfiguration with system dynamics and power balance restoration after reconfiguration, in this paper, the optimization objective function of optimal management for ship failure mode is established as a hybrid model predictive control problem from the perspective of hybrid system. To meet the needs for fast computation, a hierarchical hybrid model predictive control algorithm is proposed, which divides the original optimization problem into two stages, and reduces the computation complexity by relaxing constraints and the minimum principle. By applying to a real-time simulator in two scenarios, the results verify the effectivity of the proposed method.


2019 ◽  
Vol 12 (1) ◽  
pp. 639-650 ◽  
Author(s):  
So̸ren J. Andreasen ◽  
Leanne Ashworth ◽  
Ian N. Remόn ◽  
Peder L. Rasmussen ◽  
Mads P. Nielsen

Sign in / Sign up

Export Citation Format

Share Document