Neural Network-Based Reaction Estimator for Walking Robots

Author(s):  
Sergei Savin
Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 287
Author(s):  
Byeongjin Kim ◽  
Soohyun Kim

Walking algorithms using push-off improve moving efficiency and disturbance rejection performance. However, the algorithm based on classical contact force control requires an exact model or a Force/Torque sensor. This paper proposes a novel contact force control algorithm based on neural networks. The proposed model is adapted to a linear quadratic regulator for position control and balance. The results demonstrate that this neural network-based model can accurately generate force and effectively reduce errors without requiring a sensor. The effectiveness of the algorithm is assessed with the realistic test model. Compared to the Jacobian-based calculation, our algorithm significantly improves the accuracy of the force control. One step simulation was used to analyze the robustness of the algorithm. In summary, this walking control algorithm generates a push-off force with precision and enables it to reject disturbance rapidly.


Author(s):  
Sergei Savin ◽  
Aleksei Ivakhnenko

In this chapter, the problem of finding a suitable foothold for a bipedal walking robot is studied. There are a number of gait generation algorithms that rely on having a set of obstacle-free regions where the robot can step to and there are a number of algorithms for generating these regions. This study breaches the gap between these algorithms, providing a way to quickly check if a given obstacle free region is accessible for foot placement. The proposed approach is based on the use of a classifier, constructed as a convolutional neural network. The study discusses the training dataset generation, including datasets with uncertainty related to the shapes of the obstacle-free regions. Training results for a number of different datasets and different hyperparameter choices are presented and showed robustness of the proposed network design both to different hyperparameter choices as well as to the changes in the training dataset.


2014 ◽  
Vol 62 (10) ◽  
pp. 1497-1516 ◽  
Author(s):  
Duc Trong Tran ◽  
Ig Mo Koo ◽  
Yoon Haeng Lee ◽  
Hyungpil Moon ◽  
Sangdeok Park ◽  
...  

2000 ◽  
Vol 25 (4) ◽  
pp. 325-325
Author(s):  
J.L.N. Roodenburg ◽  
H.J. Van Staveren ◽  
N.L.P. Van Veen ◽  
O.C. Speelman ◽  
J.M. Nauta ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 502-503
Author(s):  
Mohamed A. Gomha ◽  
Khaled Z. Sheir ◽  
Saeed Showky ◽  
Khaled Madbouly ◽  
Emad Elsobky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document