Energy efficiency of cooperative cognitive radio network with outage constraints

Author(s):  
M. Naeem ◽  
K. Illanko ◽  
A. Karmokar ◽  
A. Anpalagan ◽  
M. Jaseemuddin

Cognitive radio network (CRN) came in to existence as a promising solution to tackle issues due to scarcity of spectrum. Spectrum sensing plays an important role for maximizing the spectrum utilization where spectrum of the primary users (PU) is sensed by the secondary user (SU) at particular time and space. Researchers have presented machine learning techniques for spectrum sensing, though, challenges exists for the improvement in the throughput, energy efficiency, detection probability and delivery ratio. In this paper, an enhanced restricted Boltzmann machine (ERBM) is presented for spectrum sensing based on RBM. Particle Swarm Optimization (PSO) is incorporated for enhancing the performance of spectrum sensing and computation of optimal momentum coefficient of RBM. Simulation results shows that the performance of the proposed spectrum sensing technique is comparable to the existing techniques in terms of throughput, energy efficiency and detection probability and delivery ratio.


Author(s):  
Jie Tian ◽  
He Xiao ◽  
Yimao Sun ◽  
Dong Hou ◽  
Xianglu Li

Abstract How to achieve energy-efficient transmission in radio frequency energy harvesting cognitive radio network (RF-CRN) is of great importance when nodes in CRN are self-maintained. This paper presents a radio frequency (RF) energy harvesting hardware-based underlay cognitive radio network (RH-CRN) structure, where a secondary transmitter (ST) first harvests energy from RF signals source originating from the primary network, and then communicates with a secondary receiver (SR) in underlay mode by using the harvested energy. The total consumed energy by the secondary user (SU) must be equal to or less than the total harvested energy referred to as energy causality constraint, In addition, the ST possesses some initial energy which may be the residual energy from the former transmission blocks, and we consider the energy loss of energy harvesting circuit as a systematic factor as well. Our goal is to achieve the maximum energy efficiency (EE) of the secondary network by jointly optimizing transmitting time and power. To guarantee the quality of service (QoS) of secondary transceiver, a minimum requirement of throughput constraint is imposed on the ST in the process of EE maximization. As the EE maximization is a nonlinear fractional programming problem, a quick iterative algorithm based on Dinkelbach’s method is proposed to achieve the optimal resource allocation. Simulation results show that the proposed strategy has fast convergence and can improve the system EE greatly while ensuring the QoS.


Sign in / Sign up

Export Citation Format

Share Document