restricted boltzmann machine
Recently Published Documents


TOTAL DOCUMENTS

402
(FIVE YEARS 140)

H-INDEX

22
(FIVE YEARS 6)

2021 ◽  
Vol 11 (12) ◽  
pp. 3191-3198
Author(s):  
P. Ravikumaran ◽  
K. Vimala Devi ◽  
K. Valarmathi

Automatic medical image segmentation has become increasingly important as contemporary medical imaging has become more widely available and used. Existing image segmentation solutions however lack the necessary functionality for simple medical image segmentation pipeline design. Pipelines that have already been deployed are frequently standalone software that has been optimised for a certain public data collection. As a result, the open-source python module deep-Convolutional neural network-Restricted Boltzmann Machine (deep CNNRBM) was introduced in this research work. The goal of Deep CNN-purpose RBMs is to have an easy-touse API that allows for the rapid creation of medical image segmentation transmission lines that include data augmentation, metrics, data I/O pre-processing, patch wise analysis, a library of pre-built deep neural networks, and fully automated assessment. Similarly, comprehensive pipeline customisation is possible because of strong configurability and many open interfaces. The dataset of Kidney tumor Segmentation challenge 2019 (KiTS19) acquired a strong predictor with respect to the standard 3D U-net model after cross-validation using deep CNNRBM. To that purpose, deep CNN-RBM, an expressive deep learning medical image segmentation architecture is introduced. The CNN sub-model captures frame-level spatial features automatically while the RBM submodel fuses spatial data over time to learn higher-level semantics in kidney tumor prediction. A neural network recognises medical picture segmentation, which is initiated using RBM to second-order collected data and then fine-tuned using back propagation to be more differential. According to the simulation outcome, the proposed deep CNN-RBM produced good classification results on the kidney tumour segmentation dataset.


2021 ◽  
Vol 17 (11) ◽  
pp. 155014772110553
Author(s):  
Xiaoping Zhou ◽  
Haichao Liu ◽  
Bin Wang ◽  
Qian Zhang ◽  
Yang Wang

Millimeter-wave massive multiple-input multiple-output is a key technology in 5G communication system. In particular, the hybrid precoding method has the advantages of being power efficient and less expensive than the full-digital precoding method, so it has attracted more and more attention. The effectiveness of this method in simple systems has been well verified, but its performance is still unknown due to many problems in real communication such as interference from other users and base stations, and users are constantly on the move. In this article, we propose a dynamic user clustering hybrid precoding method in the high-dimensional millimeter-wave multiple-input multiple-output system, which uses low-dimensional manifolds to avoid complicated calculations when there are many antennas. We model each user set as a novel Convolutional Restricted Boltzmann Machine manifold, and the problem is transformed into cluster-oriented multi-manifold learning. The novel Convolutional Restricted Boltzmann Machine manifold learning seeks to learn embedded low-dimensional manifolds through manifold learning in the face of user mobility in clusters. Through proper user clustering, the hybrid precoding is investigated for the sum-rate maximization problem by manifold quasi-conjugate gradient methods. This algorithm avoids the traditional method of processing high-dimensional channel parameters, achieves a high signal-to-noise ratio, and reduces computational complexity. The simulation result table shows that this method can get almost the best summation rate and higher spectral efficiency compared with the traditional method.


Author(s):  
Yana Lyakhova ◽  
Evgeny Alexandrovich Polyakov ◽  
Alexey N Rubtsov

Abstract In recent years, there has been an intensive research on how to exploit the quantum laws of nature in the machine learning. Models have been put forward which employ spins, photons, and cold atoms. In this work we study the possibility of using the lattice fermions to learn the classical data. We propose an alternative to the quantum Boltzmann Machine, the so-called Spin-Fermion Machine (SFM), in which the spins represent the degrees of freedom of the observable data (to be learned), and the fermions represent the correlations between the data. The coupling is linear in spins and quadratic in fermions. The fermions are allowed to tunnel between the lattice sites. The training of SFM can be eciently implemented since there are closed expressions for the log- likelihood gradient. We nd that SFM is more powerful than the classical Restricted Boltzmann Machine (RBM) with the same number of physical degrees of freedom. The reason is that SFM has additional freedom due to the rotation of the Fermi sea. We show examples for several data sets.


Author(s):  
Wanderson Correa ◽  
Andre P. D. de Araujo ◽  
Rodrigo B. de Aguiar ◽  
Davi Henrique Dos Santos ◽  
Daniel Dias ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ritaban Dutta ◽  
Cherry Chen ◽  
David Renshaw ◽  
Daniel Liang

AbstractExtraordinary shape recovery capabilities of shape memory alloys (SMAs) have made them a crucial building block for the development of next-generation soft robotic systems and associated cognitive robotic controllers. In this study we desired to determine whether combining video data analysis techniques with machine learning techniques could develop a computer vision based predictive system to accurately predict force generated by the movement of a SMA body that is capable of a multi-point actuation performance. We identified that rapid video capture of the bending movements of a SMA body while undergoing external electrical excitements and adapting that characterisation using computer vision approach into a machine learning model, can accurately predict the amount of actuation force generated by the body. This is a fundamental area for achieving a superior control of the actuation of SMA bodies. We demonstrate that a supervised machine learning framework trained with Restricted Boltzmann Machine (RBM) inspired features extracted from 45,000 digital thermal infrared video frames captured during excitement of various SMA shapes, is capable to estimate and predict force and stress with 93% global accuracy with very low false negatives and high level of predictive generalisation.


Sign in / Sign up

Export Citation Format

Share Document