Towards Understanding Tool-chain Bugs in the LLVM Compiler Infrastructure

Author(s):  
Xiaoyuan Xie ◽  
Haolin Yang ◽  
Qiang He ◽  
Lin Chen
ATZ worldwide ◽  
2017 ◽  
Vol 119 (7-8) ◽  
pp. 46-49
Author(s):  
Paul Spannaus ◽  
Christoph Kossira

2013 ◽  
Vol 347-350 ◽  
pp. 1799-1803
Author(s):  
Bo Qu ◽  
Zhao Zhi Wu

This paper describes the design and implementation of an ARM based embedded operating system micro kernel developed on Linux platform with GNU tool chain in technical details, including the three-layer architecture of the kernel (boot layer, core layer and task layer), multi-task schedule (priority for real-time and round-robin for time-sharing), IRQ handler, SWI handler, system calls, and inter-task communication based on which the micro-kernel architecture is constructed. On the foundation of this micro kernel, more components essential to a practical operating system, such as file system and TCP/IP processing, can be added in order to form a real and practical multi-task micro-kernel embedded operating system.


2007 ◽  
pp. 529-540 ◽  
Author(s):  
S. Heinonen ◽  
J. Kääriäinen ◽  
J. Takalo
Keyword(s):  

Author(s):  
Gabor Simko ◽  
Tihamer Levendovszky ◽  
Sandeep Neema ◽  
Ethan Jackson ◽  
Ted Bapty ◽  
...  

One of the primary goals of the Adaptive Vehicle Make (AVM) program of DARPA is the construction of a model-based design flow and tool chain, META, that will provide significant productivity increase in the development of complex cyber-physical systems. In model-based design, modeling languages and their underlying semantics play fundamental role in achieving compositionality. A significant challenge in the META design flow is the heterogeneity of the design space. This challenge is compounded by the need for rapidly evolving the design flow and the suite of modeling languages supporting it. Heterogeneity of models and modeling languages is addressed by the development of a model integration language – CyPhy – supporting constructs needed for modeling the interactions among different modeling domains. CyPhy targets simplicity: only those abstractions are imported from the individual modeling domains to CyPhy that are required for expressing relationships across sub-domains. This “semantic interface” between CyPhy and the modeling domains is formally defined, evolved as needed and verified for essential properties (such as well-formedness and invariance). Due to the need for rapid evolvability, defining semantics for CyPhy is not a “one-shot” activity; updates, revisions and extensions are ongoing and their correctness has significant implications on the overall consistency of the META tool chain. The focus of this paper is the methods and tools used for this purpose: the META Semantic Backplane. The Semantic Backplane is based on a mathematical framework provided by term algebra and logics, incorporates a tool suite for specifying, validating and using formal structural and behavioral semantics of modeling languages, and includes a library of metamodels and specifications of model transformations.


Sign in / Sign up

Export Citation Format

Share Document