Design of a real-time, low-cost monitoring system for hybrid solar-wind power generation system

Author(s):  
Wagner de Anchieta Marques ◽  
Vitor Hugo Ferreira ◽  
Guilherme Goncalves Sotelo
2014 ◽  
Vol 984-985 ◽  
pp. 764-773 ◽  
Author(s):  
J. Jane Justin Brintha ◽  
S. Rama Reddy ◽  
N. Subashini

The micro wind power generation system is used to generate the power at low cost. In this paper, generator fed SEPIC, Z source inverter based systems are presented. The unique feature of Z source inverter is shoot-through duty cycle control by which any desired output voltage even greater than input line voltage is possible. Both buck-boost capabilities in single stage conversion are possible. This is not possible in conventional inverters. Also conversion losses are reduced in Z-source inverter due to single stage conversion which increases the output voltage of the system. Keywords: micro-wind power generation system, Single-Ended Primary Inductor converter, Z source inverter.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 606
Author(s):  
Dong-Cheol Shin ◽  
Dong-Myung Lee

In this study, we propose a wind power generation system model for operating modular multilevel converter (MMC) in a hardware-in-the-loop simulation (HILS) application. The application of the MMC is a system that connects wind power to a grid through high-voltage direct current (HVDC) in the form of back-to-back connected MMCs, whereas a HILS is a system used to test or develop hardware or a software algorithm with real time. A real-time operation model of the MMC is required to conduct a HILS experiment. Although some studies have introduced the HILS model of MMCs for grid connection using PSCAD/EMTDC, it is difficult to find a study in the literature on the model using Matlab/Simulink, which is widely used for power electronic simulation. Hence, in this paper, we propose a real-time implementation model employing a detailed equivalent model (DEM) using MATLAB/Simulink. The equivalent model of both wind power generation system and MMC are presented in this paper. In addition, we describe how to implement components such as a variable resistor that is not provided in the Simulink’s library. The feasibility of the proposed model is demonstrated with real-time operation of a wind power generation system.


Sign in / Sign up

Export Citation Format

Share Document