Microwave Ablation Applicator with Tumor Detection Ability

Author(s):  
Markus Kochanek ◽  
Carolin Hessinger ◽  
Martin Schusler ◽  
Rolf Jakoby ◽  
Frank Hubner ◽  
...  
2021 ◽  
Author(s):  
Kongzhen Hu ◽  
Lijuan Wang ◽  
Hubing Wu ◽  
Shun Huang ◽  
Ying Tian ◽  
...  

Abstract Purpose: [18F]FAPI-42 is a new fibroblast activation protein (FAP) specific tracer used for cancer imaging. Here, we describe the in vivo evaluation of [18F]FAPI-42 and compared intra-individual biodistribution, tumor uptake, and detection ability to [68Ga]Ga-FAPI-04.Methods: A total of 22 patients with various types of cancer received [18F]FAPI-42 whole-body positron emission tomography/computed tomography (PET/CT). Among them, 4 patients underwent PET/CT scans, including an early dynamic 20-min, static 1-hour and static 2-hours. The in vivo biodistribution in normal organs and tumor uptake were semi-quantitatively evaluated using the standardized uptake value (SUV) and tumor-to-background ratio (TBR). Furthermore, both [18F]FAPI-42 and [68Ga]Ga-FAPI-04 PET/CT were performed in 12 patients to compare biodistribution, tumor uptake, and tumor detection ability.Results: [18F]FAPI-42 uptake in the tumors was rapid and reached a high level with an average SUVmax of 15.8 at 18 minutes, which stayed at a similarly high level to 2 hours. The optimal image acquisition time for [18F]FAPI-42 was determined to be 1 hour post injection. Compared to [68Ga]Ga-FAPI-04, [18F]FAPI-42 had a higher uptake in the parotid, salivary gland, thyroid, and pancreas (P < 0.05). For tumor detection, [18F]FAPI-42 had a high uptake and could be clearly visualized in the lesions. [18F]FAPI-42 and [68Ga]Ga-FAPI-04 showed the same detectability for 144 positive lesions. In addition, [18F]FAPI-42 had a higher SUVmax in liver and bone lesions (P < 0.05) and higher TBRs in liver, bone, lymph node, pleura and peritonea lesions (all P < 0.05).Conclusion: The present study demonstrates that [18F]FAPI-42 is a good tracer for imaging malignant tumors and exhibited comparable lesion detectability to [68Ga]Ga-FAPI-04. The 1-hour scan is an appropriate time for tumor detection and is superior to the early 10-min scan for the detection of small lesions.Trial registration Chinese Clinical Trial Registry (ChiCTR2100045757)


2016 ◽  
Vol 58 (3) ◽  
pp. 379-386 ◽  
Author(s):  
Dorthe Skovgaard ◽  
Morten Persson ◽  
Malene Brandt-Larsen ◽  
Camilla Christensen ◽  
Jacob Madsen ◽  
...  

Author(s):  
N Nour-Eldin Mohammed ◽  
N Nguib ◽  
S Zangos ◽  
T Lehnert ◽  
T Gruber-Rouh ◽  
...  

1978 ◽  
Vol 17 (06) ◽  
pp. 238-248
Author(s):  
H. Beekhuis ◽  
M.A.P.C. van de Poll ◽  
A. Versluis ◽  
H. Jurjens ◽  
M.G. Woldring ◽  
...  

Investigations with bleomycin labelled with radionuclides other than 57Co in patients with cancer and in tumor-bearing animals are described. In patients 57Co-bleo appears to be a better tumor-seeking radiopharmaceutical than 111In-bleo, 99mTc-bleo or 197Hg-bleo. This can be explained by a higher stability in vivo and a better tumor-seeking property of 57Co-bleo and less disturbing activity in the cardiac pool and in bone and other normal tissues when assessing the scintigram.Results with 111In-bleo labelled in acidic solution are not essentially different from those with 111In-bleo labelled in neutral solution.Results of 197Hg-bleo are almost identical with those of 197HgCl2 regarding the tumor-seeking effect as well as the distribution in normal tissues and organs. Probably the complex of 197Hg to bleomycin is not stable in vivo. The superiority of 57Co-bleo over 99mTc-bleo, 197Hg-bleo and also over 67Cu-bleo is confirmed by experiments on tumor bearing animals.We may conclude that the indication for use of bleomycin as a tumor-seeking pharmaceutical labelled with 111In, 99mTc, 197Hg or 67Cu seems to be very limited.


Sign in / Sign up

Export Citation Format

Share Document