Design charts and experiment for sound attenuation in a circular lined

Author(s):  
K. Yunoki ◽  
S. Ito ◽  
Y. Ando
2019 ◽  
Author(s):  
Akash Jaiswal ◽  
Rakesh Kumar ◽  
Sareesh Chandrawanshi

1996 ◽  
Vol 33 (9) ◽  
pp. 215-220 ◽  
Author(s):  
Chandramouli Nalluri ◽  
Aminuddin Ab. Ghani

A list of available codes of practice for self-cleansing sewers is presented and a review of appraisals of minimum velocity criterion is summarised. Comparisons of newly developed “minimum velocity” criteria and “minimum shear stress” criterion are presented. Some design charts are also given. These charts are applicable to non-cohesive sediments (typically storm sewers). It appears that sediment size and concentration need to be taken into account, and that a limited depth of sediment bed is recommended for large pipes (diameters > 1000 mm) to maximise their transport capacity.


1993 ◽  
Vol 162 (3) ◽  
pp. 529-535 ◽  
Author(s):  
D. Wu ◽  
Z.W. Qian ◽  
D. Shao

1994 ◽  
Vol 31 (1) ◽  
pp. 223-227 ◽  
Author(s):  
Ferdinand W. Grosveld ◽  
Kevin P. Shepherd

1980 ◽  
Vol 45 (24) ◽  
pp. 1952-1955 ◽  
Author(s):  
O. Avenel ◽  
E. Varoquaux ◽  
H. Ebisawa

2005 ◽  
Vol 127 (5) ◽  
pp. 1029-1037 ◽  
Author(s):  
L. O. Schunk ◽  
G. F. Nellis ◽  
J. M. Pfotenhauer

Growing interest in larger scale pulse tubes has focused attention on optimizing their thermodynamic efficiency. For Stirling-type pulse tubes, the performance is governed by the phase difference between the pressure and mass flow, a characteristic that can be conveniently adjusted through the use of inertance tubes. In this paper we present a model in which the inertance tube is divided into a large number of increments; each increment is represented by a resistance, compliance, and inertance. This model can include local variations along the inertance tube and is capable of predicting pressure, mass flow rate, and the phase between these quantities at any location in the inertance tube as well as in the attached reservoir. The model is verified through careful comparison with those quantities that can be easily and reliably measured; these include the pressure variations along the length of the inertance tube and the mass flow rate into the reservoir. These experimental quantities are shown to be in good agreement with the model’s predictions over a wide range of operating conditions. Design charts are subsequently generated using the model and are presented for various operating conditions in order to facilitate the design of inertance tubes for pulse tube refrigerators. These design charts enable the pulse tube designer to select an inertance tube geometry that achieves a desired phase shift for a given level of acoustic power.


Sign in / Sign up

Export Citation Format

Share Document