Three dimensional medical images of the lungs and brain recognized by artificial neural networks

Author(s):  
Takaomi Matuki ◽  
Tsuyoshi Kudo ◽  
Tadashi Kondo ◽  
Junji Ueno
2021 ◽  
Vol 2128 (1) ◽  
pp. 012016
Author(s):  
Nihal A. Mabrouk ◽  
Abdelreheem M. Khalifa ◽  
Abdelmenem A. Nasser ◽  
Moustafa H. Aly

Abstract Our paper introduces a new technique for diagnosis of various heart diseases without the need of highly experts to investigate the electrocardiogram (ECG). Using the same electrodes of the ECG machine, it will be able to transmit directly the electrical activity inside the heart to a moving picture. Our technique is based on artificial intelligence algorithm using artificial neural networks (ANN). Finding the trans-membrane potential (TMP) inside the heart from the body surface potential (BSP) is known as the inverse problem of ECG. To have a unique solution for the inverse problem the data used should be obtained from a forward model. A three dimensional (3-D) model of cellular activation whole heart embedded in torso is simulated and solved using COMSOL Multiphysics software. In our previous paper, one ANN succeeded in displaying the wave propagation on the surface of a normal heart. In this paper, we used a configuration of ANNs to display different cases of heart with myocardial infarction (MI). To check the system accuracy, eight MI cases with different sizes and locations in the heart are simulated in the forward model. This configuration proved to be highly accurate in displaying each MI case -size and location- presenting the infarction as an area with no electrical activity.


Author(s):  
Manish Kumar ◽  
Sudhansu Kumar Mishra

Background: Various kind of medical imaging modalities are available for providing noninvasive view and for analyzing any pathological symptoms of human beings. Different noise may appear in those modalities at the time of acquisition, transmission, scanning, or at the time of storing. The removal of noises from the digital medical images without losing any inherent features is always considered a challenging task because a successful diagnosis relies on them. Numerous techniques have been proposed to fulfill this objective, and each having their own benefits and limitations. Discussion: In this comprehensive review article, more than 65 research articles are investigated to illustrate the applications of Artificial Neural Networks (ANN) in the field of biomedical image denoising. In particular, the zest of this article is to highlight the hybridized filtering model using nature-inspired algorithms and artificial neural networks for suppression of noise. Various other techniques, such as fixed filter, linear adaptive filters and gradient descent learning based neural network filter are also included. Conclusion: This article envisages how to train ANN using derivative free nature-inspired algorithms, and its performance in various medical images modalities and noise conditions.


Sign in / Sign up

Export Citation Format

Share Document